
 

Universität Basel 

 

 

 

 

Morphologic, biogeographic and ontogenetic 

investigation of Mid-Pliocene menardellids 

(planktonic foraminifera) 
 

 

 

 

 Inauguraldissertation 
 zur 

Erlangung der Würde eines Doktors der Philosophie 

vorgelegt der 

Philosophisch-Naturwissenschaftlichen Fakultät 

der Universität Basel 

 

von 

Yannick MARY 
aus Frankreich 

 

 

 

 

 

Basel, 2013 



 

 

 

 

Genehmigt von der Philosophisch-Naturwissenschaftlichen Fakultät 

auf Antrag von: 

 
Prof. Dr. Andreas Wetzel                        Universität Basel 

PD Dr. Michael Knappertsbusch                    Naturhistorisches Museum Basel 
PD Dr. Frédérique Eynaud                             Université de Bordeaux 1 

 

 

 

 

 
Basel, den 24 Mai 2013 

(Datum der Fakultätssitzung) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Prof. Dr. Jörg Schibler 

Dekan 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 
  



 

 

 

 
 

 

 

 

 

 

 

 

 

 
 

 

« Nous ne parlerons pas des animaux de grande taille. Quoique leur surface individuelle soit souvent très étendue, 

leur proportion numérique et l'espace qu'ils occupent sur la Terre ne sont réèllement rien dans la balance. 

Voulons-nous voir quel rôle peuvent jouer, dans la nautre, les petits corps qui nous entourent, et dont beaucoup 

n'atteignent que la moitié, le quart, ou le sixième d'un millimètre ? Nous n'aurons pas moins lieu de nous étonner. 

L'étude que nous avons faite du sable de toutes les parties du monde nous a démontré que les restes de 

Foraminifères forment, en grande partie, des bancs qui gênent la navigation, viennent obstruer les golfes et les 

détroits, combler les ports, et former, avec les coraux, ces îles qui surgissent tout les jours au sein des regions 

chaudes de l'océan. » 

         

   

           Alcide d’Orbigny, 1839. Foraminifères de l'ile de Cuba  
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Abstract 

The universal definition of planktonic foraminifera species remains a major challenge, despite  

their central place in biostratigraphy and paleoceanography. During the last decade, combined 

outcomes of molecular and morphometric studies have brought to the light challenging aspects of their 

classification: within the formerly and traditionally defined morpho-species exists a considerable 

degree of genotypic variation that defines biogeographically and ecologically distinct sibling "cryptic" 

species. The recognition of sibling species requires techniques, which are based on other properties 

than the sole shell morphology.  

 The present work investigates the morphological variability in planktonic foraminifera of the 

sub-genus Menardella, a subset within the genus Globorotalia, in a time slice at 3.2Ma (Mid-

Pliocene). This time was selected because it includes a major diversification of menardellids, during 

which 6 homeomorphic species evolved, leading to an intricate taxonomy. Here, a new population-

based taxonomical approach is proposed, which relies on the combination of size frequency 

distributions (SFDs), geometric morphometry of the shells and sequential ontogenetic reconstructions 

of populations. A total of 7700 specimens collected from 19 localities in the tropical Atlantic, Pacific 

and Indian Oceans were investigated in great detail.  The collection of morphometric data was 

achieved with the help of an automated device, the robot AMOR. 

 The analysis of Mid-Pliocene menardellid SFDs allowed the identification of 6 different 

sedimentary populations, which on the basis of morphometric and other properties - allowed the 

recognition of 8 distinct morphotypes.These morphotypes are differentiated by their size distribution, 

the shape of their test (given by the ratio of axial diameter (δY)/spiral height (δX)), their wall structure 

and reflectivity and their number of chambers in the final whorl. The relative abundance of these 

morphotypes permits the establishment of 5 distinct menardellid provinces at 3.2 Ma: morphotypes 

MA and MB are cosmopolitans, whereas the morphotypes MC3, SH1 and SH2 are restricted to the 

Atlantic Ocean, and the morphotype ME to the Pacific Warm Pool. These morphotypes are compared 

with the formally established menardellid morpho-species. 

Both morphotypes MA and ME are interpreted as Globorotalia menardii. SFDs of these forms 

suggest the occurrence of two separated populations with distinct biogeographic ranges. Size is the 

most important parameter to distinguish these two morphotypes. Specific growth patterns derived from 
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ontogenetic studies confirm that small specimens (<200µm) of morphotype MA are adult individuals 

that have undergone reproduced with a specific growth pattern.  

The morphotype MB corresponds to the established species G. (M.) limbata. This morphotype 

shows an extended neanic stage with a high intra-specific variability, leading to  larger shells. In 

comparison with morphotype MA, the morphotype MB show an early onset of chamber morphological 

evolution during growth, which can be explained by a delay of the reproduction age of the individual 

(hypermorphosis).  

The traditional morpho-species G. (M.) multicamerata was found to split into the 3 

morphotypes MC1, MC2 and MC3. Morphotypes MC1 and MC2 belong to the same population, and 

their biogeographies overlap significantly. Dominance of MC2 was found to be restricted to the West 

Atlantic and the Pacific Warm pool. In contrast, morphotype MC1 was typically observed to occur in 

the Indian Ocean and it also dominates the menardiform faunas in the eastern Atlantic locations. 

Morphotypes MC1 and MC2 are interpreted as two eco-variants of the same species. Investigation of 

ontogenetic sequence of these morphotypes revealed a strong extension of the adult stage in 

comparison to the entire ontogenetic life span of an individual, which is interpreted as a K-stragtegy 

behavior, possibly as a result of adaptation to their shallower adult habitat.  

The morphotypes SH1 and SH2 are attributed to G. (M.) exilis and G. (M.) pertenuis, 

respectively. They are separated from each other by their densely perforated wall aspect and by a 

distinct allometric direction during growth. 

The applied protocol of SFD analysis proved to be one possible way to describe and 

investigate diversity patterns in a complex morphological plexus of planktonic foraminiferal species. 

The identification of foraminiferal populations with the help of size frequency analysis could be 

confirmed by ontogenetic studies,  i.e. the correspondence of a specific growth pattern within a 

population to the size SFD of that population. 

 

 

 

Keywords: morphometry; biogeography, ontogeny, planktonic foraminifera, morphotypes, 

menardellids, evolution, diversity, heterochrony, Pliocene, taxonomy.  
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Résumé 

La recherche d'une définition adéquate des espèces de foraminifères planctoniques reste un défi 

majeur de la micropaléontologie, malgré la place centrale des foraminifères en biostratigraphie et en 

paleocéanographie. Au cours de la dernière décennie, des études combinant analyses génétiques et 

morphologiques ont mis en évidence certains problèmes critiques dans la classification des 

foraminifères : les morpho-espèces planctoniques, telles qu'elles sont traditionnellement définies, 

seraient composées de plusieurs espèces sibyllines "cryptiques", montrant des différences génétiques, 

biogéographiques et écologiques fondamentales. La reconnaissance de ces espèces sibyllines nécessite 

de nouvelles approches prenant en compte des paramètres extérieurs à la morphologie du test.   

Par la présente étude, la variabilité morphologique est examinée chez les foraminifères 

planctoniques du sous-genre Menardella, appartenant au genre Globorotalia, sur un intervalle temporel 

situé à 3.2 Ma (Pliocène moyen). Cette période correspond à un évènement majeur de diversification 

chez les menardellidés, pendant lequel six espèces homéomorphiques coexistèrent, conduisant à une 

taxonomie des plus complexes. Nous proposons une nouvelle approche taxonomique reposant sur la 

reconnaissance de populations de foraminifères planctoniques, combinant analyses de distribution de 

fréquences de taille, morphométrie géométrique du test et reconstructions ontogénétiques séquentielles. 

Un total de 7700 spécimens ont été analysés, répartis entre 19 localités en Atlantique, Pacifique et dans 

l'océan Indien. La collecte des données a été effectuée à l'aide d'un prototype automatisé, le robot 

AMOR. 

L'étude de la distribution des fréquences de taille des menardellidés du Pliocène permet 

l'identification de six populations différentes, à l'intérieur desquelles un total de huit morphotypes sont 

définis. Ces morphotypes sont différentiés par la répartition de leur taille, la forme de leur test 

(représentée par le ratio de la longueur de spire (δX) divisé par le diamètre axial (δY)), par l'aspect de 

la paroi de leur test et par le nombre de chambres dans la dernière spire. L'abondance relative de ces 

morphotypes permet la distinction de cinq provinces biogéographiques à 3.2 Ma. Les morphotypes MA 

et MB sont cosmopolites, alors que les morphotypes MC3, SH1 et SH2 sont restreints à l'océan 

Atlantique. Le morphotype ME est quant à lui endémique à la Warm Pool dans l'océan Pacifique.    

Les différents morphotypes sont comparés aux espèces de menardellidés formellement établies. 

Les morphotypes MA et ME sont tout deux interprétés comme correspondant à l'espèce Globorotalia 

menardii. La distribution des fréquences de taille de ces deux morphotypes suggère l'existence de deux 

populations différentes, chacune ayant une répartition géographique distincte. Les études 
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ontogénétiques confirment que les spécimens appartenant au morphotype MA, communément situés 

dans la gamme de taille <200µm, sont des individus adultes et sexuellement matures ayant un modèle 

de croissance spécifique. Le morphotype MB est attribué à l'espèce G. (M.) limbata, caractérisé par 

une extension du stade de croissance néanique conduisant à l'établissement de test de grande taille. En 

comparaison avec le morphotype MA, le morphotype MB montre un développement morphologique 

précoce pendant la croissance, associé à un retardement de la reproduction (hypermorphose).     

Trois différents morphotypes, MC1, MC2 et MC3 sont interprétés comme correspondant à 

l'espèce G. (M.) multicamerata. Les morphotypes MC1 et MC2 appartiennent à la même population; 

leurs distributions biogéographiques se recoupent de manière significative, bien que le morphotype 

MC2 soit dominant dans l'Atlantique Ouest et la Warm Pool Pacifique. Le morphotype MC1 est quant 

à lui dominant dans l'océan Indien et dans l'Atlantique Est. Ces deux morphotypes sont interprétés 

comme étant deux éco-variants de la même espèce. L'étude de leur séquence ontogénétique révèle une 

extension du stade adulte relativement à la durée ontogénétique totale, ce qui correspond à un 

comportement de type stratégie K, probablement en réponse à l'évolution de leur habitat vers de plus 

faibles profondeurs. Les morphotypes SH1 et SH2 sont attribués respectivement à G. (M.) exilis et G. 

(M.) pertenuis. Ils se distinguent des autres morphotypes par la surface finement perforée de leur test et 

par une direction allométrique distincte.  

Notre nouvelle approche s'avère être un moyen efficace et précis pour accéder aux signaux de 

diversité spécifique, en particulier en cas de forte intergradation morphologique. La procédure 

d'identification de population par l'étude de distribution des fréquences de taille est validée par les 

données ontogénétiques mettant en évidence qu'à chaque distribution de taille correspond un schéma 

de croissance spécifique.   

 

 

 

 

 

 

 

Mots-clés : morphométrie; biogéographie, ontogénie, foraminifères planctoniques, 

morphotypes, menardellidés, évolution, diversité, hétérochronie, Pliocène, taxonomie. 
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Zusammenfassung 
Trotz ihrer zentralen Bedeutung in der Biostratigraphie und in der Paläo-Ozeanographie bleibt die 

Erforschung der planktonischen Foraminiferen eine grosse Herausforderung in der Mikropaläontologie. Im 

Verlaufe der vergangenen Jahre haben kombinierte Untersuchungen gezeigt, dass bei Foraminiferen die 

Klassifikation aus rein morphologischen Merkmalen nicht immer mit der genetischen Klassifikation 

übereinstimmt: Traditionell morphologisch definierte Arten stellen sich immer wieder als ein Konglomerat 

kryptischer Arten heraus, welche zwar morphologisch scheinbare Identität aufweisen,  nach genetischen, 

biogeographischen und ökologischen Gesichtspunkten jedoch grosse Unterschiede aufweisen. Diese Erkenntnis 

erfordert ein neues, differenzierteres Herangehen bei der morphologisch gestützten Klassifikation fossiler 

Vergesellschaftungen. 

In der vorliegenden Studie wird innerhalb einer Zeitscheibe bei 3.2 Millionen Jahren vor heute (mittleres 

Pliozän) die morphologische Variabilität der tropisch-subtropischen planktonischen Foraminifere Menardella 

untersucht, einer Untergattung in der Gattung Globorotalia. Zur damaligen Zeit wiesen die Menardellidae eine 

höhere Diversität auf als in den heutigen Meeren. Im mittleren Pliozän koexistierten mindestens 6 Arten 

innerhalb der Menardellidae, was wegen ihrer grossen morphologischen Ähnlichkeit eine komplizierte und oft 

auch verwirrende Taxonomie hervorgebracht hatte. 

Eine neue taxonomische Heransgehensweise wird vorgeschlagen, die auf der Erkennung und 

Rekonstruktion von Populationen planktonischer Foraminiferen beruht. Statistische Verteilungen von Grösse und 

morphologischen Parametern der Schalen wurden hierzu aus den Sedimenten gewonnen und an ausgewählten 

Proben mit ontogenetischen Untersuchungen kombiniert. Insgesamt wurden 7700 Exemplare von 19 weltweit 

verteilten Bohrlochproben des Ocean Drilling Programmes untersucht, welche aus dem Atlantik, Pazifik und dem 

Indischen Ozean stammten. Die Gewinnung der Daten erfolgte mit Hilfe eines neuartigen Abbildungsautomaten 

für Mikrofossilien, dem Roboter AMOR. 

Die statistische Untersuchung der Verteilungsmuster der Schalengrösse bei den Menardellidae aus dem 

Pliozän erlaubte die Identifikation von sechs verschiedenen Populationen, innerhalb welcher acht Morphotypen 

definiert werden konnten. Diese Morphotypen können durch die Verteilung ihrer Grösse sowie mehrerer 

Formparameter unterschieden werden. Als aussagekräftige Parameter dienten vor allem das Verhältnis von 

Windungshöhe (δX) geteilt durch den Axialdurchmesser (δY) der Schale in der Profilansicht, sowie die Anzahl 

der Kammern in der letzten Windung. Die Auskartierung der relativen Häufigkeiten der Morphotypen in den 

untersuchten Proben führte zur Abgrenzung von fünf geographischen Provinzen vor 3.2 Millionen Jahren. Die 

Morphotypen MA und MB weisen eine kosmopolitische Verbreitung auf, während die Morphotypen MC3, SH1 

und SH2 eng auf den Atlantischen Ozean beschränkt sind. Der Morphotyp ME ist endemisch im Pazifischen 

"Warm Pool" Gebiet.  
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Die gefundenen Morphotypen werden mit den formellen gültigen Arten der Menardellidae verglichen. 

Die Morphotypen MA und ME werden beide als Vertreter der Art Globorotalia (Menardella) menardii 

interpretiert. Ihre Grössenverteilungsmuster lassen die Existenz zweier verschiedener Populationen mit  

unterschiedlicher geographischer Verbreitung vermuten. Detaillierte ontogenetische Studien am untersuchten 

Material bestätigen, dass es sich bei den Exemplaren, welche dem Morphotypen MA zugeordnet wurden, um 

adulte und und geschlechtsreife Formen handelt, trotz ihrer geringen Grösse unterhalb von 200 µm. Diese 

Erkenntnis wurde aus den Wachstumskurven der Schalen, welche ausserdem artspezifisch sind, abgeleitet. Der 

Morphotyp MB wird wird der formell bekannten Art Globorotalia (Menardella) limbata zugeordnet. In diesem 

Morphotyp konnte mit Hilfe der ontogenetischen Wachstumskurven der Schalen ein verlängertes neanisches 

(prä-adultes) Stadium nachgewiesen werden. Damit weist der Morphotyp MB seinem Partner-Morphotypen MA 

gegenüber eine frühreife morphologische Entwicklung auf, welche, relativ gesehen, eine verzögerte und/oder 

verkürzte sexuelle Reproduktionsphase (Hypermorphosis) zur Folge hat. 

Die drei Morphotypen MC1, MC2 und MC3 werden als morphologisch unterschiedliche Vertreter von 

Globorotalia (Menardella)  multicamerata interpretiert. Die Morphotypen MC1 und MC2 gehören derselben 

Population an: Ihre biogeographischen Verteilungen sind signifikant deckungsgleich, jedoch mit 

unterschiedlicher Dominanz: Während der Morphotyp MC1 im Indischen Ozean und im östlichen Atlantik 

vorherrscht, bleibt der Morphotyp MC2 im westlichen Atlantik und im Westpazifik (Warm Pool) die 

dominierende Form. Diese beiden Morphotypen werden als Ökovarianten derselben Art interpretiert. Die 

Untersuchung ihrer ontogenetischen Entwicklung der Schalen weist relativ zur gesamten ontogenetischen Dauer 

gesehen eine Verlängerung des adulten Stadiums auf, welches unter den Foraminiferen typischerweise bei K-

Strategen auftritt, und welches vermutlich als evolutive Anpassung an einen Lebensraum in geringerer Tiefe zu 

betrachten ist. Die Morphotypen SH1 und SH2 entsprechen den formellen Arten Globorotalia (Menardella)  

exilis und Globorotalia (Menardella) pertenuis. Sie unterscheiden sich von den übrigen Menardella-

Morphotypen durch eine feiner perforierte Oberfläche ihrer Schale und durch eine unterschiedlich allometrische 

Grössenzunahme ihrer Schalen. 

Die Kombination von morphometrischer Populationsstatistik und ontogenetischer Vermessung der 

Schalen erwies sich als besser geeignet und genauer als die herkömmliche visuelle und qualitative Kennung der 

Formen, inbesondere wenn man die morphologisch stark überlappenden Schalen der verschiedenen Menardella-

Morphotypen betrachtet. Auf diese Weise können biologisch interessante, aussagekräftige und artspezifische 

Signaturen auch an fossilen Schalen gewonnen werden.  

 

Schlüsselwörter: Morphometrie; Biogeographie, ontogenetisches Wachstum, planktonische 

Foraminiferen, Morphotypen, Menardellidae, Evolution, Diversität, Heterochronie, Pliozän, 

Taxonomie.  
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Riassunto 

La definizione rigorosa delle specie di foraminiferi planctonici rimane un’importante sfida 

scientifica, nonostante il ruolo centrale che essi rivestono in biostratigrafia e paleoceanografia. Durante 

lo scorso decennio, i risultati combinati di studi molecolari e morfometrici hanno rivelato alcuni aspetti 

critici della loro classificazione: entro le specie morfologiche riconosciute tradizionalmente, esiste 

infatti una variazione genotipica che demarca specie “criptiche”, biogeograficamente ed 

ecologicamente distinte. Il riconoscimento delle specie sorelle richiede un nuovo approccio che prenda 

in considerazione altri parametri oltre che la morfologia del guscio.  

Il presente lavoro si occupa della variabilità morfologica nei foraminiferi planctonici del 

sottogenere Menardella, parte del genere Globorotalia, in un istante temporale a 3.2 Ma (Pliocene 

medio). Questo momento corrisponde a un evento principale di diversificazione dei menardellidi, 

durante il quale esistettero sei specie omeomorfiche, che diede luogo a una tassonomia intricata. 

Proponiamo un nuovo approccio tassonomico popolazionale, basato sulla combinazione di 

distribuzione di frequenza di taglia (SFD), morfometria geometrica del guscio e ricostruzione 

ontogenetica sequenziale. Un totale di 7700 esemplari originari di 19 località tropicali dell’Oceano 

Atlantico, Pacifico e Indiano è stato studiato in dettaglio in un istante temporale a 3.2 Ma. La raccolta 

di dati è stata eseguita con l’aiuto di un dispositivo automatico, il robot AMOR.  

L’analisi dell’SFD dei menardellidi del Pliocene medio permette di identificare sei popolazioni 

diverse, nelle quali è presente un totale di otto morfotipi differenti. Questi morfotipi si differenziano 

per la distribuzione di taglia, la forma del guscio (dato dal rapporto del diametro assiale (δY) rispetto 

all’altezza della spirale (δX)), l’aspetto della parete e il numero di camere nella voluta finale. 

L’abbondanza relativa dei morfotipi permette di stabilire cinque distinte province di menardellidi a 3.2 

Ma. I morfotipi MA e MB sono cosmopoliti, mentre i morfotipi MC3, SH1 e SH2 sono ristretti 

all’Oceano Atlantico e il morfotipo ME è ristretto alla Warm Pool dell’Oceano Pacifico. I morfotipi 

così riconosciuti sono poi stati confrontati con le morfospecie già riconosciute di menardellidi.  

I morfotipi MA e ME sono interpretati come Globorotalia menardii. La distribuzione SFD di 

queste forme suggerisce la presenza di due popolazioni separate con un areale biogeografico distinto. 

Le dimensioni sono il parametro più importante per distinguere questi due morfotipi. Studi 

ontogenetici confermano che gli esemplari più piccoli (<200µm) del morfotipo MA sono individui 

adulti che si sono riprodotti con uno schema di crescita specifico. Il morfotipo MB corrisponde a G. 

(M.) limbata. Questo morfotipo mostra uno stadio neanico esteso, con un’alta variabilità intraspecifica, 
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che porta a un guscio più grande. In confronto al morfotipo MA, il tipo MB esibisce un inizio precoce 

dell’evoluzione morfologica delle camere durante la crescita, associata a una riproduzione ritardata 

(ipermorfosi).  

Alla morfospecie G. (M.) multicamerata corrispondono i tre morfotipi MC1, MC2 e MC3. I 

tipi MC1 e MC2 appartengono alla stessa popolazione. La loro distribuzione biogeografica si 

sovrappone significativamente, anche se la dominanza di MC2 è limitata all’Atlantico occidentale e 

alla Warm Pool del Pacifico. Al contrario, MC1 è tipico dell’Oceano Indiano e domina l’Atlantico 

orientale. I due morfotipi sono interpretati come ecovarianti della stessa specie. Lo studio della 

sequenza ontogenetica di questi morfotipi rivela un’estensione dello stadio adulto rispetto all’intera 

ontogenesi, interpretata quale una strategia K in risposta a un adattamento al loro habitat adulto in 

acque poco profonde. I morfotipi SH1 e SH2 sono attribuiti a G. (M.) exilis, rispettivamente G. (M.) 

pertenuis. Sono separati dal loro aspetto parietale densamente perforato, e da una direzione allometrica 

distinta.  

Il nostro protocollo si è dimostrato un modo accurato ed efficiente per investigare gli schemi di 

diversità nel complicato plexus morfologico. L’identificazione di popolazione di foraminiferi 

attraverso l’analisi di frequenza di taglia è confermata dall’evidenza ontogenetica che a ogni 

distribuzione di taglia corrisponde uno schema di crescita specifico.  

 

 

 

 

 

 

 

 

 

Parole chiave : morfometria, biogeografia, ontogenesi, foraminiferi planctonici, morfotipi, 

menardellidi, evoluzione, diversità, eterocronia, Pliocene, tassonomia. 



Content 

 xxi 

 

 



Content 

 xxii 

 
 



Content 

 xxiii 

 

Thesis overview 

The present work is an investigation of the morphological variability of menardellid 

globorotalids (planktonic foraminifera) during the Mid-Pliocene. The biogeography of 

morphological variants of this group of marine protists in a 3.2 million years old time-slice 

(Mid-Pliocene) is studied in a global tropical-subtropical belt including the Atlantic, Pacific 

and Indian Oceans, and the relationships to the established menardellid species is discussed. 

The innovative component of this study is the application of a technique to recognize 

foraminiferal population structures in these ancient sediments. Menardellids commonly 

present intergraded shell morphologies rendering the recognition of species and subspecies 

difficult. In this way it is attempted to quantify and better understand the significance of 

morphological shell variations from the intra-sample to inter-specific levels of differences.  

The population-based approach constitutes the red line of this investigation. 

Methodologically, shell size variation is obtained using advanced techniques of automated 

image capturing, processing and automated morphometry, which are presented in chapter 2.  

In chapter 3 the population based taxonomy is worked out in the tropical Atlantic Ocean, 

where menardellids are known to be abundant, well-preserved, diversified during the Mid-

Pliocene. In chapter 4 this analysis is extended to and compared with isochronous samples 

from selected key locations worldwide. As a confirmation of this approach and results, a sub-

group of menardellid morphotypes were further investigated by studying their internal shell 

structure and developmental sequence, which is treated in chapter 5. This final experiment 

delivered detailed and unprecedented information about the growth dependent ontogenetic 

change of shell shape in menardellids, which is important to better understand and interpret 

the predominantly continuous spectrum of shell morphologies of this particular group of 

planktonic foraminifera. In the conclusions all findings are summarized and discussed with the 

perspective to elucidate the biological meaning of morphotypes and morphologically erected 

species and their implications for morphologically based phylogenetic reconstructions. 
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CHAPITER 1: Introduction: background and forewords 

 

CHAPITER 2: AMOR: An automated system for orientation and imaging 

of microfossils 

Morphological variability investigations on a global scale are limited by technical 

constraints. To overcome this situation, a new automated device called AMOR has been 

constructed, which automatically orientates and images microfossils under a binocular 

microscope. The present work constitutes the first-time routine application of AMOR to 

collect a global morphometric dataset of microfossils.  In chapter 2 a brief description of 

AMOR is presented, together with the especially developed scripting procedure, performance 

tests, methods of morphometric data generation, and partial solutions to some of the persistent 

problems when working with AMOR. 

 

CHAPTER 3: Morphological variability of tropical Atlantic menardellids in 

a 3.2  Ma old time-slice 

The investigation in the tropical Atlantic Ocean is the first step in the population based 

morphometric analysis of menardellids. Here, the case concentrates on 5 isochronous samples 

from a Mid-Pliocene time slice at 3.2 Ma taken from tropical locations in the Atlantic,  e.g. at 

ODP Sites 502, 659, 661, 667 and 925. Using this sample set each methodological step is 

explained leading from the recognition of populations in menardellid frequency distributions 

by Gaussian fitting to the establishment of morphotypes.  

In brief, the results suggest the presence of 7 different morphotypes, which are 

informally named MA, MB, MC1, MC2, MC3, SH1 and SH2 during the Mid-Pliocene. The 

transformation from populations A, B, C and D into these morphotypes is discussed in detail, 

and a comparison of the found morphotypes with formally established morpho-species known 

in the literature is presented. The biogeographic tendencies of the morphotypes in the Atlantic 

Ocean are highlighted as well. 
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CHAPTER 4: Worldwide morphological variability in Mid-Pliocene 

menardellid globorotalids revealed by population-based taxonomy  

The population based taxonomy method proposed in chapter 3 is expanded to a 

worldwide scale, with samples selected from the 3.2  Ma time-slice in the Indian and Pacific 

oceans, and 2 additional ones in the western Atlantic. Our results suggest that most of the 

morphotypes defined in the Atlantic occur worldwide, and that a limited number of 

morphotypes are restricted to the Atlantic Ocean and or the western Pacific Ocean. The Mid-

Pliocene menardellid faunas diversify into 5 different provinces: The western Atlantic, the 

eastern Atlantic, the Indian Ocean, the western Pacific Warm Pool, and the eastern tropical 

Pacific.  

 

CHAPTER 5: Ontogenetic and heterochronic patterns in menardellid 

globorotalids 

In Chapter 5, the morphology of selected menardellids is studied at an individual scale, 

by comparison of the ontogenetic growth of the three most abundant Pliocene morpho-species,  

i.e. Globorotalia menardii, G. (M.) limbata and G. (M.) multicamerata. In order to obtain a 

statistically relevant number of specimens, a simple protocol to easily open foraminifera shell 

was applied using hydrochloric acid, allowing the ontogenetic study of as many as 350 

specimens.    Growth curves and morphological measurements were further used to distinguish 

menardellid species from an ontogenetic development point of view. These observations 

revealed hypermorphic heterochronic changes in the phylogenetic lineage of G. (M.) menardii 

- G. (M.) limbata - G. (M.) multicamerata. In this way, the population derived model for 

menardiform taxonomy, which is based on size, could be validated. 

 

Chapter 6: conclusion, synopsis and outlook 
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1.1 Introduction 

 Planktonic foraminifera are marine heterotrophic protists that build a calcareous shell. 

They are relatively small organisms, ranging in size from 50 to 1000µm (de Vargas et al., 

2004), and show a wide range of shell morphology. While the modern planktonic foraminifera 

diversity is comparably modest (estimated to include no more than about 50 species according 

to Hemleben (1989), Kennett and Srinivasan (1983), Kucera (2007), many more extinct taxa 

existed in the fossil record. Planktonic foraminifera are major contributors to the marine 

calcareous flux and deep-sea carbonate (Schiebel and Hemleben 2000).  

 On a global scale, five biogeographic provinces are recognized in both hemispheres of 

the modern oceans,  i.e. a tropical, a subtropical, a transitional, a sub-polar and a polar 

province (Bradshaw, 1959; Bé and Tolderlund, 1971). The diversity of planktonic 

foraminifera is lowest in polar areas and maximal in sub-tropical areas. It is mainly controlled 

by temperature and vertical niche partitioning in the water column (Rutherford et al., 1999). 

The majority of extant planktonic foraminifera are known to be cosmopolitan within these 

biogeographic provinces, with the exception of three known endemic species in the Indian and 

Pacific Oceans (Globigerinella adamsi, Globoquadrina conglomerata, and Globorotaloides 

hexagonus) and another endemic form (pink variety of Globigerinoides ruber) in the tropical 

Atlantic Ocean (Kucera, 2007). 

 The fossil record of planktonic foraminifera is an exceptionally complete one for 

fossils in general, and, provided that carbonate preservation is sufficient, allows identification 

at species level (Bolli and Saunders, 1985). Their high evolutionary rate (de Vargas et al., 

1997), their enormous abundance, and their relatively simple "Bauplan" (Berger, 1969), made 

planktonic foraminifera a very interesting candidate for evolutionary studies. For all these 

reasons, these organisms have been intensively used for biogeochronology and for paleo-

environmental reconstructions. During the last decades, research about planktonic 

foraminifera has widened to include the development of proxies for paleoceanographic 

reconstructions, which are based on the improved analysis of trace-elements (Cd, Ba), 

elemental ratios (Ca/Mg), stable isotope composition of the shells or the faunal composition. 

A particularly growing and challenging field of research has become the molecular taxonomy 

with extant foraminifera, which became possible through the development of enhanced PCR 
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methods to extract and amplify DNA from living cells and the availability of rapid routine 

DNA sequencing techniques (Stathoplos and Tuross, 1994, Seears 2011). These are essential 

for finding integrated congruent species concepts, which are a fundamental pre-requisite for 

reliable paleo-environmental reconstructions. 

 

1.2 Classification and species concept of planktonic foraminifera 

Extant and fossil planktonic foraminifera have been traditionally classified by 

paleontologists on the basis of wall structure and overall external shell morphology. Species of 

foraminifera are consequently morpho-species, a species concept defined as "the smallest unit 

that is consistently and persistently distinct and distinguishable by ordinary means" 

(Cronquist, 1978; Mayden, 1997; McGowran, 2005, see Mallet, 2007 for a review). Explicitly, 

the diagnosis of the shell is the central concept of this species definition. 

 Historically, the classification of planktonic foraminifera relies on the establishment of 

type specimens - holotypes, which are specimens that serve as the typical reference for a 

particular species. All major classical reference studies and atlases on planktonic foraminifera, 

such as Stainforth et al., (1975), Blow (1979), Kennett and Srinivasan (1983), Bolli and 

Saunders (1985), Loeblich and Tappan (1988), Pearson (1993), Pearson et al., (2006) follow 

this practice. The creation of type species emerged to become very common for standardizing 

index forms in industrial biostratigraphy from the early 1910's through the 1970’s and later 

(McGowran, 2005). Problematic with this practice is that a single specimen is used to describe 

a whole species neglecting the morphological variability at intra- or inter-specific levels 

(Scott, 2010). It therefore received much criticism (Kucera and Darling, 2002; Darling and 

Wade, 2008; Scott, 2011), especially because the erection of type specimen remains subjective 

through the glasses of the investigator who has selected it from an assemblage. 
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1.2.1 Sibling "cryptic" species in planktonic foraminifera 

The advancement of molecular sequencing techniques brought to the light the 

existence of genetically distinct "cryptic species" within the morphological species (see 

Darling and Wade, 2008 for a review), which challenged the traditional, morphology-based 

classification. Investigation of specific morphologies of these cryptic species revealed that the 

geographic morphological variability, traditionally considered as ecophenotypy, was actually a 

possible indication for genetic differences (Huber et al., 1997; de Vargas et al., 1997, Morard 

et al., 2009; Aurahs et al., 2011). Cryptic species are adapted to different ecological niches, 

and are distributed in distinct biogeographic provinces (Darling and Wade, 2008).The 

tendency of recent marine pelagic taxa to diverge in ecology, life cycle, or behavior and to 

form sibling species (sensu Steyskal, 1972) is well known (Knowlton, 1993; Verity and 

Smetacek, 1996), and has important implications to the classification and phylogenetic 

reconstruction of extant and extinct (micro) fossils. 

Cryptic species indicate that the current classification may greatly underestimate the 

diversity of recent and ancient planktonic foraminifera (Pawlowski and Holtzmann, 2002; 

Darling and Wade, 2008). The evolutionary pressure induced by competition among sibling 

species within the same lineage may slow down the apparent rate of evolution (Alizon et al., 

2008), which may theoretically explain the picture of gradual evolution in several planktonic 

foraminiferal lineages. Finally, the idea that planktonic foraminifera are cosmopolitan 

organisms with capacity of long distance dispersal appears to be a consequence of the broad 

definition of morphological species (de Vargas et al., 2004). In contrast, biogeographic 

molecular analyses have revealed a distinct distribution with a narrow geographic dimension 

between the limiting ecological barriers in a number of extant species (Aurahs et al., 2011; 

Darling and Wade, 2008, Darling et al., 2006; de Vargas et al., 2004). Therefore, foraminiferal 

genotypes seem to show considerable endemism (Kucera and Darling, 2002; Kucera et al., 

2005). Nevertheless, molecular analyses confirmed that some species of planktonic 

foraminifera show spectacular dispersal, for example between Arctic and Antarctic 

populations of Neogloboquadrina pachyderma, (Darling et al,. 2000; Stewart et al., 2001) or 

in populations of Truncorotalia truncatulinoïdes (Sexton and Norris, 2008). 
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1.2.2 The debate about species concept in planktonic foraminifera 

Conceptually, sibling species constitute a critical limitation to a species concept relying 

on morphology (e.g. Mallet, 2007). Sibling species can only be recognized on the basis of 

subtle morphological differences, which hitherto have not yet been taken into consideration by 

taxonomists, or if other observations than morphology are available. Such parameters may 

include the genetic composition, behavior, reproduction preferences, seasonality, and 

vicariance, to name a few. Not all of them are recordable in the sediments, but some could 

indirectly be (using for instance stable isotopes or Ca/Mg ratios).  

If some attempts have been successful in predicting the genetic type using morphology 

with a reasonable error range (Quillévéré et al., 2011), the recognition of biological species 

based on morphological characters remains largely problematic. There is no constant 

relationship between morphological characters and genetic diversity. In some case, cryptic 

species such as Orbulina universa are separated by subtle differences in microstructure 

(Morard et al., 2009), whereas N. pachyderma and N. incompta, some genetic variants 

traditionally lumped under N. pachyderma, show an important difference in coiling direction 

(Darling et al., 2006). In contrast, Globigerinoides sacculifer shows a wide range of 

morphologies without any obvious genetic difference (André et al., 2012), which is not yet 

well understood among taxonomists. However, epigenetic variability and intraspecific 

variation of genome content is suggested to strongly influence foraminifera phenotype 

variation (Parfrey et al., 2008).   

In an attempt to overcome the difficulty with morpho-species and cryptic genotypes, 

Darling and Wade (2008) suggested that morpho-species represent genera rather than species-

level taxonomical units, while de Vargas et al., (2004) suggested morpho-species to be super-

species (an assemblage of allopatric species of monophyletic origin, often with slight but 

distinct morphological differences, definition from de Vargas et al., 2004, following Mayr, 

1970). However, none of these two definitions provides indication in how species recognition 

should be applied in practice, especially in fossil taxa. An integrative concept for species, 

which satisfies biologists, ecologists, geneticicists, and paleontologists, still remains an 

unsolved issue at this time. 
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1.3 The evolution prospection project 

If the identification of genetic differences is limited to living assemblages, the fossil 

record is pivotal for understanding climatic and environmental changes in the past. As 

suggested by Darling and Wade, (2008), morphological and molecular approaches to 

recognize species are far from being mutually exclusive, but are rather complementary. A 

better understanding of planktonic foraminifera diversity could not be accomplished without a 

new integrative taxonomical protocol that takes into account the significant advances obtained 

from molecular data. An important issue is that not only local, but global morphological 

variability ought to be included in the definition of species, on a biogeographic level but also 

back in geological time (i.e. between points of speciation). Also, not only specimens, but 

populations ought to be characterized (Scott, 2011). 

The evolutionary prospection project attempts to integrate these different concepts into 

taxonomical investigations (Knappertsbusch, 2011; Figure 1.1). The idea is to 

morphologically map species of planktonic foraminifera at different locations, along well-

known ecological gradients or bio-provinces, and during different time-slices in the geological 

past. If isolated populations can be identified, it could be possible to map the morphological 

diversity and to unravel environmental parameters that influence morphological variability. 

Local populations are then compared between successive time-slices with the perspective to 

visualize morphological evolution within lineages, and understand underlying processes. In 

this way, speciation events (cladogenesis: the geographic separation of an ancestral lineages 

into two sister species; anagenesis: phyletic change,  i.e. evolution of the entire population 

without branching) should be identifiable and mapped. Quantitative methods of visualizing 

morphological change through time have been explored in this context in Knappertsbusch and 

Mary (2012). This approach of geographic investigations through time conceptually is known 

as chronophenetics (see Dzik, 2005 for a review), but has never been realized in such a 

rigorous approach.  
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Figure 1.1: Conceptual schema of the evolutionary prospection project (after Knappertsbusch, 2011) . The 

hypothetical morphological speciation (cladogenesis) is seen in the moments of splitting and divergence of 

bivariate shell parameters trait A and trait B over a geographically global scale and through time. The 

youngest time slice represents the Holocene and has been investigated in a study by Brown (2007). The 

present study takes focus on the time slice at 3.2 Ma. 

 

In this context, menardellids were selected as a model. Menardellids form a subset 

within the formal genus Globorotalia, which are characterized by sharing the global 

morphology of their extant representative Globorotalia (Menardella) menardii (Blow, 1979; 

Brown, 2007). Menardellids are cosmopolitan in tropical oceans and found in abundance in 
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sediments. They have a wide stratigraphic range, and have undergone considerable radiation, 

especially during the Pliocene. In addition, their test is often well preserved in the sediment, 

and their lenticular morphology is relatively easy to model in two dimensions. 

 

1.3.1 Previous work: the Holocene time-slice 

The initial global morphological investigation of menardellids was performed by 

Brown (2007). This first step into the evolutionary prospection project served as a 

morphological reference for menardiform variability. Extant menardellids consist, with the 

exception of G. (M.) menardii, of only few menardellid morpho-species. The coexisting 

plexus of G. tumida was also included, because of continuous morphological intergradation 

(the phylogenetic relationships of the two groups needs still to be clarified). 

Brown (2007) worked out the morphological variation of menardellids and tumids 

from more than 70 surface sediment samples, which are globally distributed in the modern 

tropical oceans. The analysis of morphological variability of up to 6000 individual shells 

allowed the identification of two intergrading morphoclines, between the morphological 

plexus of G. (M.) menardii and G. tumida, which consists of a total of six distinct 

morphotypes : the menardellid morphotypes α, β (initially described in Knappertsbusch, 

2007), χ and η on one hand, and tumid morphotypes ε and φ on the other hand (Brown, 2007). 

These morphotypes were shown to have distinct but overlapping biogeographical 

distributions. 

 

1.3.2 The Mid-Pliocene time-slice 

The Mid-Pliocene represents a transitional period,  i.e. it was the last period of warmth 

before the onset of climate deteriorations leading to the northern hemisphere glaciations 

(Haywood et al., 2009). At that time the foraminiferal assemblages were already relatively 

similar to modern morphospecies, and the distribution of menardellids in the Atlantic is 

comparable to present distribution (Dowsett and Robinson, 2007). The progressive closure of 

the Isthmus of Panama, between 4.2 and 3.5  Ma (Jain and Collins, 2007 and reference 



Chapter 1: Introduction 

 10 

therein), has led to a major reorganization of currents in the Atlantic and Pacific Oceans 

(Steph et al., 2010; Fedorov et al., 2013), and the closure of the Indonesian Seaway (at about 

5–3  Ma;  e.g., Cane and Molnar, 2001; Karas et al., 2009) strongly affected the global 

hydrography as well (Karas et al., 2011). Simultaneously, the menardellids underwent a major 

radiation from middle Miocene to early Pliocene (Kennett and Srinivasan, 1983), and 

especially in the Atlantic, as a vicarious speciation event induced by the closure of the Panama 

isthmus (Chaisson, 2003; Knappertsbusch, 2007). Six distinct morpho-species evolved, which 

were closely related to G. (M.) menardii. The strong morphological similarities among 

Pliocene menardellid morpho-species have led to a very intricate taxonomy. The biogeography 

and the ecological preferences of these species at that time are only poorly known. 

For these reasons, the Mid-Pliocene was considered as a second time-slice that is worth 

of focussing for evolutionary prospection. For the present investigation, a set of 29 samples 

around the tropical to subtropical world oceans was identified with the help of Neptune 

numerical dating tools (NEPTUNE-working group 2000) and the materials were acquired 

from respective ODP core repositories. Ideally, this period also represents the study target of 

the Pliocene Research, Interpretation and Synoptic Mapping (PRISM) (e.g. Dowsett, 2007 and 

references therein). A comprehensive database for paleo-environmental reconstructions is 

available for this period. 

Basic questions to solve are: 

 1) Is it possible to distinguish discrete menardellid populations based on 

morphological characterization of their shells? 

 2) What is the best solution for defining morpho-species in case of 

morphological intergradation? 

 3) What is the origin of the observed morphological plasticity? 

 4) Is the menardellid morphological variability congruent with distinct regional 

or large scale habitat changes? 
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1.4 Evolution and mechanism of morphological change 

1.4.1 Speciation mode and planktonic foraminifera 

One of the most fundamental questions that underpin diversity studies is how new 

species arise. Considering the species as a meta-population, (i.e. with groups of interconnected 

populations that form an extended reproductive community and an unevenly distributed but 

unitary gene pool or field for gene recombination (citation from de Quieros, 2005)),what 

defines a new species is then the reproductive isolation of a given population, which opposes 

gene flow and makes the distinction between permanent populations (Mayr, 1942; Gould, 

2002). Consequently, theses two notions (reduction of gene flow and the reproductive 

isolation) are the central concept in the definition of biological speciation modes. 

Theoretically, four distinct types of speciation exist, allopatric, peripatric, parapatric and 

sympatric speciation (Figure 1.2), which constitute a continuum, differing only in the degree 

to which the initial reduction of gene exchange is generated by a physical barrier external to 

the organism, or by evolutionary change in the biological characteristics of the organisms 

themselves. 

Allopatric speciation (Figure 1.2A) results from a geographical barrier to gene flow or 

dispersal between populations, by topography or unfavorable habitat. It is often associated 

with vicariance (divergence of two large populations). The physical barrier reduces gene flow 

sufficiently to prevent gene exchange if the geographically isolated populations later come 

into contact. Allopatry is however not defined by the geographical distance, as populations 

with a low power of dispersal may be micro-geographically isolated (Futuyama, 2005), 

especially in pelagic environment, where vertical niche separation can lead to allopatry (de 

Vargas et al., 2004; Weiner et al., 2012). 

Peripatric speciation (Figure 1.2B), also known as the founder effect (Mayr, 1954), is 

defined as the divergence of a small population from a large widely distributed ancestral form 

in an adjacent ecological niche located in the periphery of the distribution of the ancestral 

population.  
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Figure 1.2: Conceptual schema of the four speciation types. Drawn after Futuyama (2009). (A). Allopatric 

speciation. (B) Peripatric Speciation. (C) Parapatric speciation. (D) Sympatric speciation. 

 

In parapatric speciation (Figure 1.2C), adjacent populations diverge and become 

reproductively isolated without complete geographic isolation. Partial isolation may occur by 

unequal dispersal, incomplete geographical barrier or any narrow environment discontinuity, 

resulting in limited gene flow. Parapatric population divergence implies that the distribution of 

the divergent population remains in the range of the ancestral one. There are consequently 

only little extrinsic barriers to gene flow. Parapatric mode of speciation is favored in the open 

oceans, especially in foraminifera (Lazarus, 1986; Sexton and Norris, 2008). Tectonic barriers 
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and water mass fronts, acting as potent isolating mechanisms, are, in some cases, very weak. 

(Darling et al., 2000; Sexton and Norris, 2008). 

In the sympatric speciation model (figure 1.2D), speciation occurs without any 

geographic barrier, within the same geographic region. The term sympatry refers to organisms 

whose ranges significantly overlap. In that case there are no physical barriers that oppose gene 

flow. In planktonic foraminifera, species are naturally vertically distributed in the water 

column (Schiebel and Hemleben, 2005). The sediment record of foraminifera integrates each 

above living population in the same sediment interval. Specific co-occurrences in sediment 

may therefore be misinterpreted as apparent sympatry, although strong vertical niche 

partitioning could occur (Weiner et al., 2012). 

 

1.4.2 Heterochrony: the evolution of ontogeny 

The change of ontogenetic development, relative to the development sequence in the 

ancestor species, is defined as heterochrony (McKinney and McNamara, 1991). Heterochrony 

is one of the most important evolutionary pattern part, a major source of morphological 

variations and evolutionary novelties (e.g. Gould 1977; Albrecht et al., 1979; McKinney and 

McNamara, 1991; Hall, 1992; Webster and Zelditch, 2005). Heterochrony and the evolution of 

ontogeny in general have already been of great interest among evolutionary biologists (Raff, 

1996; McKinney, 1999). Although it is known to be of great importance, for example, in the 

evolution of morphological characters of larger benthic foraminifera, relevant studies have 

remained scarce in planktonic foraminifera. During the late 1990's, the concept of 

heterochrony was extended by developmental biologists to include the entire developmental 

story of the organism from the earliest stage of ontogeny to maturity (sequential heterochrony: 

Klingenberg, 1998; Smith, 2001), in contrast to classic allometry studies of heterochrony, 

which describes the relationship between size and shape. Two distinct modes of heterochrony 

are defined, which are based on the nature of the developmental modification in the 

descendent species in comparison to its ancestor. 
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Figure 1.3 (on previous page): Conceptual scheme of the six heterochronic modes with respect to ancestral 

development trends. Allometric relationship (size versus trait) between ancestor and descendant are shown 

in parallel (from McKinney, 1986) associated with corresponding representation of organism development 

(from McNamara, 1986). Definitions are according to McNamara(1986). (A) Peramorphic heterochronic 

modes - hypermorphosis, pre-displacement, acceleration. (B) Paedomorphic heterochronic modes - 

Progenesis, post-displacement and neoteny. 

 

If the rate of morphological changes is prograding (for example size increase or an 

extension of the development) during ontogeny, the heterochronic change is called 

peramorphosis (Figure 1.3A). Peramorphic changes can occur by hypermorphosis, which 

means the delay of sexual maturation, by pre-displacement, which means an earlier onset of 

growth of particular morphological structures, or by acceleration, which is an increase in the 

overall rate of morphological development (not only related to a particular structure). 

In the opposite, if the ontogenetic development is reduced, or if the developmental 

sequence is interrupted, the heterochronic change is called paedomorphosis (Figure 1. 3B). 

Also here, three sub-modes of paedomorphic change exist: progenesis means a precocious 

sexual maturation, which alters the further ontogenetic sequence. The delayed onset of growth 

of a particular morphological structure is called post-displacement. Finally, the decrease of the 

rate of development is termed neoteny.  

Studies of heterochronic changes in planktonic foraminifera are rare in the literature. 

They concentrate on allometric heterochrony, depicting chrono-phyletic trends of shell shape 

and size mirroring of trends during ontogenetic growth. An example is the post-displacement 

of the onset of the neanic stage in Globoconella inflata in comparison to its ancestor G. 

puncticulata (Wei et al., 1992). In the case of Morozovellids, the appearance of the keel from 

ancestral Praemurica uncinata to its descendant Morozovella angulata was interpreted as the 

result of complex paedomorphic changes (Kelly et al., 1996). Morphological changes, which 

occur shortly before extinction in that lineage was explained by progenesis (Kelly et al., 

2001). These examples suggest a prominent role of heterochronic change in the evolutionary 

history of planktonic foraminifera. However, no direct observation with regard of the onset or 

termination of such developments in individuals has been done yet. 
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1.5 Methodological approach  

The present study combines three different types of measurements extracted from 

menardellid shells: size frequency distributions of shell length versus shell width in profile 

view, density distributions of linear shell parameter measurements, and ontogenetic shell 

growth measurements (Figure 1.4). 

 

 

Figure 1.4: Schematic chart of the three types of analyses involved in the present study, and derived from 

menardellid shells. (A) Size frequency distribution (SFD) of the overall menardellid population in the 

sediment. Size is represented by keel view (profile view) area. The red line represents the SFD extracted 

from size distribution histogram. (B) Density distribution of menardellid populations using contoured 

frequency diagrams of bivariate measurements δX (spiral view) and δY (axial diameter). (C) Specific 

ontogenetic shell growth curves of two menardellid species. 
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1.5.1 Size-frequency distribution modeling 

Size is a fundamental morphological property to discriminate between planktonic 

foraminifera. Because the size of the test is linearly correlated with cytoplasmatic mass 

(Schmidt et al., 2006), it is strongly influenced by the ambient environment (Spero et al., 

1991). A foraminiferal species will reach larger size under optimal conditions, which are often 

species specific (Schmidt et al., 2004; Schmidt et al., 2006), while growing to smaller sizes if 

stressed (Hecht, 1976; Schmidt et al., 2004, Schmidt et al., 2006). Considering the multi-

dimensionality of marine habitats, the size of organisms varies with increasing distance from 

optimum conditions. The partitioning of oceanic depth into vertically segregated ecological 

niches strongly influences distribution of organism size (Rutherford et al., 1999; Al-Sabouni et 

al., 2007) including planktonic foraminifera. 

Many parameters describing a shell can be selected as estimators for overall size: shell 

size (surface or volume) and total weight are usually reasonable proxies to describe planktonic 

foraminiferal body size (Schmidt et al., 2006, Regenberg et al., 2010). Working with surface, 

volume or total weight has several advantages, in comparison to single linear measurements 

taken from the shell. They suffer little from positioning errors while allowing direct inter-

specific comparisons. Here, and using digital imagery the overall shell area was taken as the 

estimator of size, which can easily be derived from outline coordinates. At the population 

level, histograms of size frequency distributions (SFDs) (Figure 1.4A) show to what extend 

the size of an individual species may vary between environments. 

Empirical measurements have demonstrated that the SFD of a particular foraminiferal 

population, which settles through the water column, can be approximated by the sum of an 

exponential distribution, representing juvenile individuals in the smaller size fractions, and a 

Gaussian distribution representing pre-adult and adult specimens in the larger size fractions 

(Peeters et al., 1999). In addition, the comparison of planktonic foraminiferal specific SFDs 

collected in surface water plankton tows, sediment traps, and surface sediments has shown a 

progressive reduction in abundance of small juveniles towards the sea floor, depending of the 

species (Peeters et al., 1999).  
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Such an under-representation of juveniles in the sediment in comparison to the 

standing stock in the plankton or transient path to the sea-floor is indicated by the absence of 

the exponential component in the SFD. However, the preservation of juveniles depends on 

many factors, such as diagenesis, dissolution, season, and population dynamics. To some 

degree, experiences has shown that the shape of the SFD is also species dependent: for 

example, the exponential component occurs more frequently in globigerinid species than in 

others (Peeters et al., 1999). The fraction of small specimens appears to vary also with 

geography: while larger specimens are major contributors to the CaCO3 flux in the Arabian 

Sea and the Red Sea (Bijma and Hemleben, 1994), the situation is reversed in the North-East 

Atlantic, where small specimens are the dominant contributors to the foraminiferal CaCO3 

flux (Schiebel and Hemleben, 2005). According to Schmidt et al., (2006), a large size of 

planktonic foraminiferal test is rather indicative for fast growth than for a prolonged individual 

growth period, which is opposite to larger benthic foraminifera. Consequently, the residence 

time of transient juveniles in the water column of comparably large planktonic species tends to 

be shorter than in the case of small sized planktonic foraminifers. This could serve as an 

explanation for the observation that in case of the comparably large menardellid juveniles are 

under-represented in sediments, despite excellent calcite preservation. 

Taking the above considerations into account, it is deduced that most menardellids 

reach their adult stage in size-fractions above 125µm. Consequently, and following the model 

of Peeters et al., (1999), the sedimentary representation in the size fraction > 100µm of 

menardellids, which settled from a specific plankton population, can be assumed to follow a 

Gaussian distribution. Hence, in the present investigation, Gaussian decomposition of mixed 

size frequency distributions (SFDs) is applied as a discriminative prospection tool to identify 

ancient menardellid populations. 
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1.5.2 Density distribution of shell morphology 

Shells of menardellid globorotalids can be parameterized with few geometric 

measurements, ideally in profile view (Knappertsbusch, 2007). Experience has shown that 

well suited measurements include the spiral height, the axial diameter, the spiral and umbilical 

side inflation, and the number of chambers. 

At the population level morphospaces are defined as geometric mathematical spaces, 

which describe and relate organismal phenotype configurations (Mitteroecker and Huttegger, 

2009), where a single specimen is represented by a point. The geometric arrangement and 

accumulation of these points among each other suggests an ecological meaning,  i.e. may 

induce phenotypy (e.g., Shoval et al., 2011). In this context, (contoured) density diagrams 

allow fast and precise visualization of clusters of specimens (Figure 1.4B). In a particular 

location, a single morphotype may be recognized as a stable cluster in the applied 

morphospace. If the distribution of specimens is multimodal or multidirectional,  i.e. if several 

clusters exist and/or superimpose, more than one morphotype is indicated. 

Looking on a global scale, key locations must be selected, which may serve as regio 

typicae for a particular oceanic environment. This was done here in the Atlantic, Indian, and 

Pacific Oceans at the 3.2  Ma time-slice, in order to obtain a global impression of menardellid 

morphotypes, their end-members and transitions, and to detect their provincial preferences. 

 

1.5.3 Ontogenetic reconstruction 

The study of ontogenetic tendencies provides a different insight to better understand 

the morphological variability of shells, which comes from the fine level on individual scales. 

The comparison of average specific ontogenetic growth rates is a very promising way to detect 

meaningful biological differences between species, and is therefore of great use for the 

classification of planktonic foraminifera (Brummer et al., 1987; Huber, 1994). Menardellid 

globorotalids are especially well suited for ontogenetic analysis because of their low 

trochospiral, biconvex morphology showing only little chamber overlap. Micro-dissection of 
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shells is one way to study shell growth and chamber accretion during the entire life span of the 

organism. 

Ontogenetic studies of menardellid foraminifera are thus carried out using cross-

sectional measurements of successive chambers, based on digital imaging of internal shell 

structure. Chamber area measurements allow the quantification of specific growth curves 

(Figure 4C). The number of instars is taken as an estimation of biological lifetime of the 

individual. This allows a comparison of growth among organisms, which share similar 

allometric behavior (Blackstone, 1987). The absolute "ontogenetic clock" (i.e. the absolute 

span of life-time) cannot yet be derived from fossils, but a relative "ontogenetic clock" can be 

drawn on the basis of the measured growth rates. In addition, the life-span of an individual is 

most probably strongly non-linear, influenced by environmental conditions and metabolic 

states (e.g. Blackstone, 1987; Strauss, 1987; Schmidt et al., 2004; Schmidt et al., 2008). 

In classical studies the ontogenetic growth of planktonic foraminifera is divided into 5 

different stages (Brummer et al., 1987; Wei et al,. 1992; Huber, 1994),  i.e. the embryonic, the 

juvenile, the neanic, the adult and the terminal stages (Brummer et al., 1987; Wei et al., 1992). 

During the present investigation, these stages were quantitatively constrained, which was done 

by measurement of a number of parameters like cross sectional chamber areas. In addition, the 

shape classification of chambers proposed by Cifelli and Scott (1986) was used to interpret 

specific habitat adaptations  (following Lipps, 1979). Estimation of the porosity of successive 

chambers from the proloculus (first chamber resulting of the gamete fusion) to the terminal 

chamber served as an estimator of gaseous or ionic exchange of the cell with the environment, 

and is therefore an interesting proxy for metabolic activity during growth and maturation 

(Hemleben, 1989). 
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Abstract 

Manual orientation and imaging of large datasets of microfossil for morphometrics is 

difficult and time consuming. For routine application of shell morphology analysis, an 

automated device that automatically orients foraminifera under light binocular microscope has 

been made: the robot AMOR. AMOR is capable of imaging foraminifera test in optimal 

profile "keel view" position, and to automatically capture images of specimens. The 

performances of the AMOR device are evaluated through the analysis of up to 600 specimens 

of Indian Ocean menardellids. In this sample, the AMOR failure rate, in the automatic mode 

was about 21%, which is quite high.  Examination of error sources indicates that most of the 

failure is imputable to specific morphologies that cannot be handled by the positioning 

protocol. The development of AutoIt scripts, using the AMOR manual mode, is suggested as a 

possibility to solve AMOR positioning issues and to further increase the autonomy of the 

device.  

 

 

 

 

 

 

 

 

 

 

 



Chapter 2: Amor, an automated device 

 31 

2.1 Introduction 

Morphometry based on digital images of foraminifera is an increasing field of 

micropaleontology. The manual collection of a statistically significant number of specimens 

(Knappertsbusch, 2007; Brown, 2007) includes major and tedious effort to produce sound 

data. The morphological analysis of extended datasets cannot easily be handled without the 

help of automated devices.  

Planktonic foraminifera are tiny organisms with multifaceted 3D structures. While 

during the past decade automated image processing systems for the routine measurement of 

randomly oriented microfossils have become increasingly documented in the literature 

(Bollmann et al., 2004; Schmidt et al., 2004;  Eynaud et al., 2008), the automated orientation 

of specimens to homologous position remained a major challenge. This is one of the main 

reasons why traditional morphometry on microfossil shells has remained difficult for routine 

application. 

In order to resolve these difficulties, the automated device AMOR (Automated 

Measurement system for shell mORphology) was recently realized by Knappertsbusch et al., 

(2009) in a several years lasting collaboration with students and engineers of the University of 

Applied Sciences (FHNW) in Brugg/Windisch, Switzerland. AMOR has been designed for 

automatic orientation of microfossils and for imaging of isolated specimens under light 

binocular microscope. Its development was part of a major effort to study the morphological 

evolution of the Neogene planktonic foraminiferal plexus Globorotalia menardii 

(Knappertsbusch, 2011a; Knappertsbusch and Mary, 2012). The present chapter describes 

some aspects and limitations of AMOR and provides ideas for potential further development. 

Many observations, testing results and traditional morphometric applications in context of the 

development of AMOR are available in MorphCol, which is a periodically updated 

compendium of traditional morphometric procedures developed for and used during the 

evolutionary morphometrics of menardiform globorotalid (Knappertsbusch, 2004-2013: 

MorphCol). New insight and contributions that resulted particularly during the present PhD 

thesis include: 
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1.) The recognition of the influence of microfossil shape on the performance of 

AMOR has recently led to improvement of AMOR to its current version 3.28 (Knappertsbusch 

2004-2013: MorphCol; Schorpp, 2013), see the sections about performance under Results and 

Discussion further below. 

2.) The operation of the graphical user interface (GUI) of AMOR using AutoIt as a 

scripting bot was an advanced innovation to increase the efficiency of automated microfossil 

automation (see Discussion). 

 

2.2 Material and methods 

2.2.1 Technical description 

AMOR consists of a motorized binocular microscope and a four axis motorized stage 

(Figure 2.1). The microscope is a standard MZ6 from Leica, which is equipped with a motor 

focus from Leica and a customized motorized zoom for automatic magnification (ranging 

from 0.63x through 4x). For real-time imaging a 3CCD color videocamera from Sony 

(DXC390P) with a sufficiently fast image transmission rate has been used. The four-axis 

motor stage is composed of four Nanotec micro-stepping motors allowing for movement into 

four degrees of freedom. Two motors drive a pitch and roll tilting movements of the sample 

holder, which are perpendicular to each other, while two additional motors allow for 

perpendicular gliding of the sample within the current planes of tilting. The tilting range had to 

be limited from -30° through +30° in order not to collide with the microscope stand or with the 

objective of the microscope. The sample holder is a central aluminum plate showing a 

rectangular cavity, where a standard micro-faunal sample slide from P.A.S.I. s.r.l. Torino can 

be placed.  

All moving components (e.g. the four motors of the four-axis stage, the zoom-motor 

and the focus-motor) and the camera are controlled by the AMOR software, which is installed 

on a PC running under Windows 2000. The images collected in this investigation were 

collected using AMOR version 3.17. Meanwhile, AMOR was further improved and extended 

to version 3.28. The AMOR software was developed under the LabView 8.5 development 
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system from National Instruments. While all stepping motors driving the tilting- and gliding 

movements of the stage and the motorzoom are digitally fed by controllers (connected to data 

acquisition boards DAQmx 8.6 from National Instruments), the Leica motorfocus is controlled 

using the CAN interface, which is connected to IMAQ 1405 frame-grabber from National 

Instruments, where also the camera is mounted.  

Illumination of the central sample slide is provided by two sources. Two lateral fiber-

optic swan-neck lamps located on the right and left side of the motorized stages, produce 

incident light. In order to reduce reflections from the bottom of the sample slide and to 

enhance the contrast between the microfossil and its surroundings, the tips of the swan-necks 

are covered by polarizing filters, which can be twisted. A coaxial ring illumination from Volpi 

is mounted underneath the objective of the microscope providing homogeneous light. Also 

this light passes a polarizing filter, which can be adjusted for total extinction of reflections 

from the bottom of the sample. For optimum contrast between slide and the microfossil, which 

has in most cases a bright surface, the slide-bottom has been chosen black.  

The AMOR software can be operated in two modes: a semi-manual mode, where 

functions for orientation (gliding, tilting, image rotation, magnification, and image capture) 

and focusing can be activated my mouse clicks, and a fully automated mode, where a full 

sequence of auto-orientation, auto-focusing, magnification, and image capture is run from the 

previously selected array of fields in the multi-cellular slide. In order to make the system 

flexible enough for microfaunal slides with different field numbers, a slide calibration module 

was implemented too. 

 

2.2.2 Optimal positioning 

In comparison to many other planktonic foraminifera, the menardellid shell 

morphology is relatively simple. Its compressed, low trochospiral shell is divided in two 

halves, the umbilical side, where the aperture is located, and the spiral side, where the 

successive addition of chamber along the spire is visible. Key features of the menardellid 

shells are the aperture (primary opening of foraminiferal shell), the apex (the initial portion of 

a trochospiral test) and the keel (peripheral thickening of the shell) (Figure 2.2). For efficient 
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and accurate comparison of shells, these structures need to be turned into homologous 

positions as good as possible. 

 

 

 

Figure 2.1: 3D model of AMOR device,  realized with the free  software Blender.  PC and stepper-boxes are 

not shown. Close-up photographies of  upper part (modified Leica microscope)  and lower part (four axis  

stage) of the AMOR are displayed.  
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Most of the variation of menardellid shells is best seen in profile "keel" view rather 

than in umbilical or spiral view. Keel view means that the keel is central in this position, 

which allows the measurement of two simple parameters, δX (spiral height), and δY (axial 

diameter). Figure 2.2 illustrates a virtual menardellid specimen in perfect keel view.  

For  reaching the optimal keel view positionning, several preconditions must be met. 

The specimen needs to be in upright position, standing on the keel. The spiral side must point 

to the left side, while the aperture needs to be facing upward in direction to the microscope 

objective. The aperture should be in the middle of the axial length. The tip of the apex should 

ideally coincide with the minimum X-coordinate of the shell's outline. Furthermore, the line 

connecting the uppermost and lowermost Y-coordinates of the outline should be vertical (keel 

view definition adopted from Knappertsbusch 2007). 

 

 

 

Figure 2.2: Optimal keel view positioning of a hypothetic menardellid specimen (see text for further 

explanations). 

 



Chapter 2: Amor, an automated device 

 36 

2.2.3 Automated orientation  

In order to automatically orientate individual specimens in optimal keel view AMOR 

mechanically drives the specimen by successively roll- and pitch movements, while holding 

the specimen within the field of view (which is a function of magnification) by the two gliding 

motors. Simultaneously the specimen is constantly re-focused after every mechanical change 

of tilt- and roll condition. In order to satisfy the "vertical line requirement", the specimen on 

the monitor is soft-rotated (i.e.  the image is rotated instead of the specimen). Each status of 

orientation is checked by calculation of the surface area of the foraminiferal particle, its 

length, and the deviation from verticality from the actual LUT image.  

 

• Roll movement 

Roll means the repeated tilting of the mounted specimen from a condition where the 

foraminiferal equatorial plane is inclined to the right to a condition, where the equatorial plane 

is inclined to the left, or reverse. Mathematically, this is performed by finding the position, 

where the enclosing area of the shell is minimal (=Roll condition). After giving the command 

the robot initializes the Roll procedure by a sequence of Roll movements, while constantly 

calculating the specimen area at each Roll angle. Using the minimum condition and a 

sequence of If case logics, the optimum "upright" condition is found.  

 

• Pitch movement 

Subsequently, the orientation of the specimen continues with a sequence of forward- 

and backward tilting movements (=Pitch movement). Here, the desired position is reached as 

soon as the longest axis of the shell in keel view (δY, see Figure 2.2), reaches its maximum 

value. 
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• Image rotation 

Once the Roll and Pitch conditions are attained, the last step consists in a rotation of 

the specimen. This is performed by soft-rotation of the image in AMOR (i.e. without physical 

movement of the shell). The best vertical positioning is attained if the momentum of inertia of 

the grey-level image becomes minimal (this condition works as long as the deviation of the 

longest axis of the shell does not surpass plus or minus 45°, see Knappertsbusch et al., 2009). 

The definition of these three conditions, necessary to reach an optimal positioning in 

keel view, were set and designed through experimentation. They are limited to forms similar 

to the menardiform shell geometry. Specific morphologies of other microfossil groups involve 

other positioning constraints that must be evaluated through experimentation before analysis. 

Next to the keel view positioning AMOR includes also the possibility to orientate shells in 

spiral and umbilical views as well. Here, the algorithm for shell orientation is simply based on 

successively maximizing the enclosing shell area.   

 

2.2.4 Working procedure  

Before imaging, every single specimen was mounted by hand in keel view as good as 

possible, on multicellular micropaleontological faunal slides. In order to facilitate operation of 

AMOR without failure, specimens were glued to the slide in approximate profile position with 

the spiral apex pointing always to the left. This processing remains unfortunately time 

consuming: in average, a single slide, including 60 specimens, is mounted in approximately 

1h30. The white numerals, which are standard engraved in the faunal cells, were previously 

blackened out with a pen in order to prevent misinterpretation of drawn numerals with 

microfossils by AMOR.  

In automatic mode AMOR automatically selects the highest possible magnification and 

automatically focuses on the object under the lense after mechanical movement. If desired, the 

magnification at which automatic positioning of specimens is performed, can be set 

interactively, next to other parameters. Alternatively, the automatic zoom can be deactivated 

too, so that the magnification can be adjusted by hand, which is sometimes useful to accelerate 
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processing of an entire slide. Once AMOR has been started up, initialized and all parameters 

are set, the robot scans the multi-cellular slide, field by field until the last specimen is reached. 

After auto-orientation, focusing, and centering the specimen, the final magnification is set, the 

image is focused again and a grey-level tiff-image is written to disc. A complete orientation 

sequence (i.e. moving to a particular specimen, auto-centering the specimen, orientation, re-

centering, focusing, auto-magnification, imaging, and moving to the next) takes approximately 

4 to 8 minutes per specimens. 

 

2.2.5 Post processing 

The output of AMOR is a series of tiff files showing oriented specimens in the slide, 

with one image per specimen, a file containing the magnification at which every specimen was 

imaged, and a log file with position coordinates and information about errors if automatic 

positioning of a specimen failed. A visual check of each picture, however, remains necessary 

in order to survey eventual mal-operation of AMOR due to poor focusing, false-orientation, 

poor illumination, blending of the camera, a malfunctioning of the auto-magnification unit, 

etc. If errors occur persistently, specimens can also be oriented using the manual mode of the 

AMOR, where the diverse functions can be activated manually by mouse-clicks. After 

collection images are then submitted to a suite of image enhancement operations in the 

commercial software Adobe Photoshop, which can be scripted for accelerated treatment. This 

post-processing includes mainly LUT, opening and closing operators and image sharpening or 

smoothing filters and is necessary to enhance the contrast between particle and the black 

background before images are further processed to particle outlines. Thereafter, images are 

converted to binary using the open domain software ImageJ. Extraction of Cartesian outline 

coordinates and traditional morphometry are then carried out using a suite of programs 

described in MorphCol (Knappertsbusch 2004), which were adapted to the usage under 

Windows. 
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Figure 2.3: Chart showing the three most common orientation errors of AMOR, from the morphological 

origin of the error to picture example. (A) Roll error (B) Tilt error (C) Rotation error. 
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2.3 Results 

2.3.1 Repeatability  

The reproducibility of AMOR imaging was tested in detail before the beginning of this 

project by Knappertsbusch et al. (2009), Knappertsbusch (2004-2013: MorphCol). There, 

influence of numerous parameter settings has been tested including illumination, thresholds, 

precision of the X and Y translational and tilting motor, calibration of the camera and 

calibration of the microscope magnification using always the same specimen. These results 

will not be repeated here. Test measurements show a reasonable repeatability (refer to results 

on repeatability tests documented in Knappertsbusch (2004-2013): MorphCol Supplements #3, 

5, and 8). 

 

2.3.2 Performance 

The performance of AMOR for automated orientation of microfossils can only be 

evaluated after analysis of an extended dataset. During practical work with AMOR, four types 

of failure were experienced. The first refers to device failure. This is erroneous behavior 

during auto-magnification and auto-focusing, sometimes leading to a complete crash of the 

system. The other three types of failure were observed in combination of an unfavorable 

orientation of the microfossil.   

Roll errors occurred frequently, if the device failed to find a minimum area condition 

during "rolling", which can be caused by an unfavorable relationship between area enclosed 

by the microfossil and the tilting (Roll) angle (Figure 2.3A). Such a situation can occur, if the 

shape of the shell strongly deviates from the typical biconvex menardiform profile. Similarly, 

Pitch errors occurred, if no maximum of axial length was detected during pitch movement, 

which may lead to an excessive pitch amplitude and hence mechanical blocking of the stage 

(Figure 2.3B). Such a situation occurs preferentially, if the periphery of the particle in 

umbilical or spiral view becomes circular: in that case "pitching" is not capable of finding a 

major axis. 
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The third type of failure (rotation error) was observed, if the particle orientation, which 

is software driven, is unable to set the longest axis vertical on the computer monitor (Figure 

2.3C). This situation can occur, if the grey-level distribution over the microfossil is laterally 

very uneven or asymmetric, so that the computation of the momentum of inertia of the grey-

level image returns false rotational angles. 

In order to document the performance of AMOR more quantitatively a total of 613 

specimens of the Mid-Pliocene (from the 3.2 Ma-time-slice) sample in the Indian Ocean (ODP 

Site 707) were measured, and the different error messages reported by AMOR in the 

corresponding Log files were investigated (see Table 2.1). In this sample, the AMOR failure 

rate in the automatic mode was found to be about 21%, which is relatively high. However, it is 

interesting to note that the device failure rate is only about 5%, leaving the remainder 16% to 

the above mentioned Roll-, Pitch- or Rotational or other types of errors. 

 

Table 2.1: Performance of AMOR tested with 613 bulk menardellid specimens form ODP Site 707 (Indian 

Ocean). The results suggest that the error rate is also susceptible to the size fraction, especially in context 

with Roll errors. 120 specimens per size fraction where selected where possible. 

 

Slide Size fraction Number of 
specimen 

% Error 
(global) 

% Roll 
error 

% Tilt 
error 

% Rotation 
error 

% Device 
error 

1 >600µm 13 15 0 8 8 0 

2 500-600µm 60 33 2 17 8 5 

3 500-600µm 60 23 5 7 5 7 

4 400-500µm 60 15 3 3 5 3 

5 400-500µm 60 15 3 3 3 5 

6 300-400µm 60 17 3 0 0 12 

7 300-400µm 60 18 7 5 3 2 

8 200-300µm 60 23 13 0 0 10 

9 200-300µm 60 18 10 2 7 0 

10 100-200µm 60 20 12 0 2 7 

11 100-200µm 60 30 18 5 3 3 
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2.4 Discussion 

2.4.1 Automated positioning as a source of systematic false positioning 

Considering Table 2.1, the different types of errors of the AMOR are not randomly 

distributed. In some cases, there is a size dependent component in the frequency of errors, 

particularly in case of the Roll error, as seen in Figure 2.4, which displays the size fraction 

dependent contribution of the three different error types to the global error rate. 

Roll errors occur more frequently in the small size range, whereas Pitch and Rotation 

errors tend to occur more often in the larger size fractions. This information is of particular 

interest, because it indicates that failures are not an intrinsic or random feature of AMOR 

version 3.17, but often must be thought in context of the size or shape distributions of the 

investigated particles. 

 

 

Figure 2.4: Histograms showing the contribution of the three orientation errors to the global error rate (in 

%), as a function of the size fraction. 

 

This experiment and the inspection of the test sample has led to detect that Tilt and 

Rotation errors are causally linked with the abundance of circular outlines (in spiral view) and 

a "twisted" morphology showing aberrant, deformed final chambers in the investigated shells. 

Such morphologies are known to occur in Globorotalia multicamerata, a large menardellid 

species with a quasi-circular outline abundant in Mid-Pliocene test sample (we coined this 

particular problem the "circle problem"). Roll errors occur preferentially in cases, where 
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asymmetric shells with spiro-convex or umbilico-convex profiles prevail, as it commonly 

occurs with small, immature specimens showing usually a flatter spiral side and a strongly 

convex umbilical side (this problem is reference to as the "G. miocenica-problem", see 

Knappertsbusch, 2011b and c). 

During development of the orientation algorithm, the versions until AMOR 3.17 were 

tested using the typical biconvex, quasi-symmetric shells of modern G. (M.) menardii. 

Keeping this historical fact in mind, together with the above-mentioned observations, the 

orientation algorithm needs further adaptation to other types shell profiles. Automatic 

orientation using versions until AMOR 3.17 thus functions best for morphologies that do not 

strongly deviate from G. (M.) menardii. In all other cases orientation in the manual mode or 

post-auto-orientation corrections are recommended. Meanwhile, some of these deficiencies 

(i.e. the "G. miocenica problem") could be resolved in the current version under development, 

AMOR 3.28, but testing and application of this new version became beyond scope of this PhD 

thesis. 

 

2.4.2 Scripting AMOR using AutoIt 

The modification of the AMOR code, which is written in Labview, requires special 

skills from professional engineers. Because of its complexity only simple modifications within 

the vi's (=virtual instruments) sometimes leads to malfunction, which is difficult to locate in 

the code. This is an unfavorable situation because other than typical menardiform 

morphologies are difficult to be automatically oriented with this device. However, the user has 

the alternative to apply the manual mode, where all necessary functions can be operated 

interactively by mouse commands. This has led to the idea to "externally" drive the device by 

automatic scripting all necessary mouse commands, which can be realized using AutoIt 

scripting language. This has the large advantage that commands of AMOR in manual mode 

can be combined in any desired combination to a fully automated robot.  

AutoIt (version 3) is a free BASIC-like, automation oriented language created for the 

manipulation of windows and windows related graphic user interfaces (GUIs). Features of this 

language include several built-in editors, standalone applications and key/mouse/windows 
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functions that are explicitly designed to automate routine procedures or repetitive software 

tasks. AutoIt can easily take control over the entire computer, simulate keystrokes, mouse 

movements, windows control/manipulation, etc. AutoIt compiler and documentation can be 

downloaded at the official AutoIt website under www.autoitscript.com.  

AutoIt is especially designed to create so-called "bots". A bot is a simple computer 

program made to simulate user decisions, which follow a list of decisional trees created for 

specialized tasks (such as, in our case the orientation of a microfossil with a specific 

morphology). It is ideal to perform highly repetitive tasks. Bots are widely used to simple 

automated tasks, for example over Internet, or in video gaming.  

They are different from macros: bots are a sequence of programming instructions that 

specify how a certain list of functions must be carried out. They have the capacity to execute 

several programs simultaneously. In contrast, simple macros are usually limited to its "mother-

software" and do not show this high degree of flexibility.  

Combined with AMOR, an AutoIt-based bot (or any other scripting language capable 

of controlling mouse commands) can thus easily take control of the entire AMOR GUI and 

emulate a response from the user. In this way, the Amor Manual Driving Script (AMDS) bot 

was created in order to circumvent the above mentioned difficulties, The AMDS bot 

automatically manipulates the manual mode of AMOR: it successively allows to move from 

one specimen to next in the slide, to orientate and image them using all the built-in routines of 

AMOR. Even in case of errors, the corresponding error messages and dialogues that are sent 

to the monitor can be recorded and diverged to a corresponding automated reaction of the 

AMOR system. With the help of AMDS, AMOR can perform analysis independently, 

overnight, which is a very welcome gain of time.  

The application of the AMDS bot gives most flexibility to the AMOR device and 

program. AMDS includes routines dealing with occasional AMOR software problems in 

connection with the auto-magnification module or when auto-zoom failed. In case of a critical 

situation (strong mechanical blocking of moving elements) AMDS can reboot AMOR 

operating system, restart, and initialize a new batch. Several version of AMDS are available, 

each one corresponding to a specific type of analysis. It allows any user to quickly design 
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procedures adapted to particular microfossil morphology or to variability of sampling quality. 

For example, AMDS version 9.0 deals with variation of size of microfossil by adjusting the 

tilting magnification. 

 The source code of AMDS 9.0 is given in the appendix 1. It must be reminded  that 

some features of AMDS depend on file directories or are coordinated via aliases, which must 

therefore remain on the desktop.). All these scripting files are thus especially customized to 

the device, to which they belong for manipulation of the entire system. 

 

2.5 Conclusion 

AMOR has convinced to be a very useful device for automated specimen orientation 

and imaging. Especially, the addition of AutoIt scripting turns AMOR into a fully autonomous 

robot. Interesting potential is seen in the creation of a portfolio of scripts for all kinds of 

foraminiferal species and so providing the means for extensive automated morphometric data 

collection. With this perspective, the proposal of creating a worldwide sample grid including 

temporal sequences of biogeographic time-slices for mapping the morphological variation of 

species through time and space may once become a reality to evolutionary research. 
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Abstract 

The morphological variation of the planktonic foraminiferal plexus of Globorotalia 

(Menardella) (Bandy, 1972) has been studied in a Pliocene time-slice at 3.2 Ma. Using a 

combination of size, linear shell measurements and shape analysis, an extended morphological 

protocol is explored in order to define morphological subgroups within the Menardella 

subgenus. Isochronous samples at 3.2 Ma have been selected at five ODP/IODP Sites in the 

low latitude Atlantic Ocean, in which up to 600 specimens per sample have been oriented, 

imaged and analyzed using a new automated prototype for morphological analysis called 

AMOR. Multimodal size frequency distribution is related to the occurrence of several distinct 

populations.  

Three main ubiquitous populations of such menardellids are isolated, next to two 

additional biogeographically limited subgroups. These populations strongly differ in 

abundance and size. Using morphological classifiers, subpopulations are distinguished among 

these populations, leading to the establishment of seven different morphotypes informally 

named: MA, MB, MC1, MC2, MC3, SH1 and SH2. These morphotypes are assigned to formal 

species, i.e., MA corresponds to Globorotalia (Menardella) menardii, MB to G. (M.) limbata, 

SH1 to G. (M.) exilis, and SH2 to G. (M.) pertenuis. In contrast, the species G. (M.) 

multicamerata is interpreted as being composed of three distinct morphotypes, sharing a 

similar size range, but differing in shell morphology. Morphotype MC1 shows thin and 

elongated chambers, whereas morphotype MC2 is characterized by a thick and robust test. 

MC3 is inflated with a distinct flexure in the final chamber. Size differences are linked to 

variations in habitat temperature and oxygenation, with the exception of G. (M.) 

multicamerata morphotypes, which are probably adapted to a productivity gradient. 
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3.1 Introduction 

Since recent outcomes of combined morphometry and molecular studies have revealed 

that subtle morphological differences could reflect cryptic genetic diversity (Huber et al., 

1997; de Vargas et al., 2001; Morard et al., 2009; Aurahs et al., 2011), planktonic 

foraminifera have been the focus of many biometric investigations (for example: Huber et al., 

2000; Renaud and Schmidt, 2003; Eynaud et al., 2009; Regenberg et al., 2010; Moller et al., 

2011). Traditionally defined morpho-species are actually composed of biogeographically and 

ecologically distinct populations (Kucera and Darling, 2002; Darling and Wade, 2008). 

Morphological variability, within these populations, has been inferred as evidence of genetic 

diversity, thus opening a new field for biometrical investigations. 

Only a few studies have tracked morphological variability as possible evidence of 

species level diversity in ancient forms rather than in living specimens (Kucera, 1998; Kelly et 

al., 2001; Renaud and Schmidt, 2003; Knappertsbusch, 2007; Eynaud et al., 2009; Georgescu 

et al, 2009; Hull and Norris, 2009; Rossignol et al., 2010). Although the fossil record of 

planktonic foraminifera contains many examples of morphological gradation that possibly 

include several cryptic species, the definition of the species boundary within a fossil 

planktonic population remains problematic. The establishment of significant differences 

through biometry, without molecular analysis, involves several constraints that must be 

surmounted. Above all, the tenuous morphological differences between cryptic species make 

their recognition difficult (de Vargas et al., 2001; Morard et al., 2009; Aurahs et al., 2011), 

and induce the analysis of hundreds of specimens (Fatela and Taborda, 2002).  

Usually, imaging of isolated specimens is carried out manually, which limits sampling 

size due to technical constraints and efficiency. A few studies have overcome this issue by 

applying automated techniques for the collection of morphological parameters such as size, 

area, or roughness (e.g. Schmidt et al., 2006; Eynaud et al., 2009; Moller et al., 2011), applied 

only on randomly oriented tests. Since outline coordinates are sensitive to orientation (Sokal 

and Rohlf, 1969; Rohlf, 1990), the use of non-oriented tests is not suitable for geometric 

morphometry. Furthermore, morphometric studies that involve oriented tests are restricted to a 

limited number of specimen of the >250 μm size fraction per sample (inferior to 500 
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individuals to less than 100 if several times intervals are analyzed (Kucera and Widmark, 

2000; Kelly et al., 2001; Renaud and Schmidt, 2003; Hull and Norris, 2009)). 

This paper describes a new approach, combining size frequency distributions and 

morphological measurements of large size samples with the use of an automated imaging 

robot: the Automated Measurement system for shell mORphology (AMOR) (Knappertsbusch 

et al., 2009). The morphological variability of Globorotalia (Menardella) menardii, and 

related species was investigated through the Pliocene period in the low latitude Atlantic 

Ocean. This group was chosen because of its high diversity during this period (Bolli and 

Saunders, 1985). The use of an automated device provides the opportunity to significantly 

increase the necessary number of individuals. Using contoured frequency distributions allows 

the identification of clusters within morphological populations. As a biogeographic 

experiment, shell variation is evaluated by comparing morphological variability from five 

selected localities corresponding to different environmental settings within the tropical North 

Atlantic: the Caribbean Sea, the Canary Current, the Equatorial Counter Current, the 

Mauritanian upwelling, and the Brazilian margin (see Figure 3.1). 

 

3.1.1 Taxonomic considerations 

Menardiform globorotalids constitute a subset within the genus Globorotalia 

(Cushman, 1927), in which G. (M.) menardii is the best known representative. To express the 

need to further separate G. (M.) menardii and its phylogenetically related forms from the 

remaining globorotalids, Bandy (1972) suggested the two subgenera Globorotalia and 

Menardella, on the basis of the hypothetical phylogenetic relationship. The clade G. 

acheomenardii–praemenardii–menardii and its related species are kept apart from the other 

globorotalid lineages (i.e. Fohsella, Jenkinsella, Globoconella, Hirsutella, Truncorotalia, 

Tenuitella and Turborotalia). This concept was also applied by Kennett and Srinivasan (1983), 

using the term menardellid to refer to the G. menardii clade. Following similar arguments, the 

terms menardiform globorotalid (Stainforth et al., 1975) or menardine (Cifelli and Scott, 

1986) were applied to distinguish the G. menardii lineage from other globorotalids. 
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Figure 3.1: Geographic distribution of ODP study Sites 502, 659, 661, 667, and 925. Approximate position 

of actual currents is shown. Map adapted from Dowsett and Robinson (2007). 

 

The present work follows the generic and specific concept of Bandy (1972) and 

Kennett and Srinivasan (1983). It takes into consideration the observations of Bolli and 

Saunders (1985). In synonymy with the term Globorotalia (Menardella) sensu Kennett and 

Srinivasan (1983), we apply the term menardiform of Stainforth et al. (1975) for summarizing 

members of the G. menardii lineage. 

 

3.1.2 Test objects: Mid-Pliocene menardellids 

We selected menardellid globorotalids as a model because of their ubiquitous 

occurrence in tropical sediments, their relative large size range, and their wide variety of 

morphologies. Their lenticular biconvex profile, divided in two sides by a blunt keel, makes 

them easy objects to model in two dimensions. 
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The Globorotalia (Menardella) menardii–Globorotalia (Menardella) multicamerata 

lineage originated with the appearance of G. (M.) menardii during the middle Miocene zone 

N12 (between 13.5 and 12 Ma). The species gave rise to Globorotalia (Menardella) limbata 

and Globorotalia (Menardella) multicamerata during the middle Miocene zone N14 and the 

Late Miocene zone N17b (Kennett and Srinivasan, 1983). A progressive evolution to larger 

size occurred between 3.11 and 2.29 Ma (Knappertsbusch, 2007). At the end of the Pliocene, 

all menardellids but G. (M.) menardii became extinct. 

Extant G. (M.) menardii are facultative symbiont bearing species (Hemleben et al., 

1989) living at the seasonal thermocline depth, but capable to adapt the depth of their habitat 

depending on temperature (Gasperi and Kennett, 1992). Recently, Sexton and Norris (2011) 

investigated the ecological preferences of G. (M.) menardii. According to these authors, the 

ventilation of the upper thermocline is the key feature controlling menardellid populations, G. 

(M.) menardii tracking poorly ventilated waters. In contrast, the ecological preferences of G. 

(M.) limbata and G. (M.) multicamerata are poorly known. Chaisson and Pearson (1997) and 

Chaisson (2003) considered them to be thermocline dwellers whereas Pfuhl and Shackleton 

(2004) interpreted their oxygen isotope ratios to be indicative of shallower habitats. Gasperi 

and Kenneth (1993) suggested that this group changed its habitat depth from intermediate to 

shallow during the late Miocene. 

G. (M.) menardii, G. (M.) limbata, and G. (M.) multicamerata form a phylogenetic 

lineage, which is expressed as a continuous morphological intergradation from G. (M.) 

menardii to G. (M.) multicamerata (Kennett and Srinivasan, 1983; Bolli and Saunders, 1985; 

Cifelli and Scott, 1986; Chaisson, 2003; Knappertsbusch, 2007). All three species share the 

typical menardiform test morphology;  i.e. a low trochospiral circular to oval test surrounded 

by a prominent keel. Chambers are densely perforated; sutures are straight on the umbilical 

and curved on the spiral side (Blow, 1969; Kennett and Srinivasan, 1983). They differ by an 

increase of the number of chambers per whorl (i.e. 5 to 6 for G. (M.) menardii, 6 to 8 for G. 

(M.) limbata and 8 to 10 for G. (M.) multicamerata). G. (M.) multicamerata has a smaller 

terminal chamber and a wider aperture than its ancestor G. (M.) limbata (Pfuhl and 

Shackleton, 2004), and shows a pronounced keel. Morphological differences are reported to be 

highly variable with biogeography (Cifelli and Scott, 1986). 
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The very similar morphology of G. (M.) menardii and G. (M.) limbata makes their 

differentiation difficult. Limbation, which is the continuation of the keel over the anterior face 

of a chamber on the spiral side (sensu Blow, 1969), is often cited as a key taxonomic feature. 

However, this parameter is not sufficiently diagnostic. Within G. (M.) limbata populations, all 

degrees of limbation can be observed; limbation has been reported to be ontogenetically 

variable (Kennett and Srinivasan, 1983; Chaisson and Leckie, 1993). In the present study, G. 

(M.) limbata is considered an intermediate form between G. (M.) menardii and G. (M.) 

multicamerata, following Kennett and Srinivasan (1983) and Bolli and Saunders (1985). 

Globorotalia (Menardella) exilis and Globorotalia (Menardella) pertenuis are 

separated from the other menardellid species by their delicate, thin, and shiny test, originating 

from a dense and very fine wall perforation (Blow, 1969; Kennett and Srinivasan, 1983). G. 

(M.) exilis is characterized by a low coiled test, with 5 to 7 chambers in the last whorl and a 

thin keel. G. (M.) pertenuis can be distinguished from G. (M.) exilis by its much flatter 

strongly compressed test, along with its depressed umbilical side. Both species are reported to 

be endemic in the Atlantic Ocean (Kennett and Srinivasan, 1983; Chaisson and Leckie, 1993).  

 

3.1.3 Settings 

The middle Pliocene climate and environmental conditions have become fairly well 

known due to the climate modeling of the Pliocene Research, Interpretation and Synoptic 

Mapping (PRISM) Project (see Haywood et al., 2009 and references therein). According to the 

PRISM project, the overall climate at 3.2 Ma ago was on average 3 °C warmer than today 

(Cronin, 1991; Crowley, 1991; Dowsett and Poore, 1991; Dowsett et al., 1996; Dowsett and 

Robinson, 2009; Dowsett et al., 2009). Warming was accentuated at high latitudes whereas 

tropical temperatures were relatively similar to modern conditions (Chandler et al., 2008). 

Since restriction and closure of the Isthmus of Panama during the early Pliocene (Jain and 

Collins, 2007), exchanges between the Pacific and Atlantic Oceans were reduced to 

interrupted. The pattern of the north Atlantic circulation was supposed to be similar to that of 

the present day, with a subtropical gyre and a western boundary current transporting heat from 

the equator polewards (Dowsett and Robinson, 2007). Regional upwellings were also reported 
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similar to those of the present day. Planktonic foraminiferal studies of various sites report 

remarkably similar assemblages to modern analogs (Chaisson and Pearson, 1997; Cullen and 

Curry, 1997; Dowsett and Robinson, 2007; Dowsett et al., 2009; Lutz, 2011).  

 

Table 3.1: Stratigraphic information of ODP Sites 502, 659, 661, 667, and 925. 

ODP Sites Coordinates Depth (mbsf) Age (Reference) 
 

502A 11°29.46 N ;  
79°22.74 W 

80.91 3.2 Myrs (Keigwin et al, 1982; 
Knappertsbusch, 2007)   
 

659A 

 

18°04.63 N ; 
21°01.57 W 

99.95 3.2 Myrs  
(Leg 108 initial report) 

661A 09°26.81 N ; 
19°23.16 W 

45.77 3.2 Myrs  
(Leg 108 initial report) 
 

667A 04°34.15 N ; 
21°54.67 W 

44.89 3.2 Myrs  
(Leg 108 initial report) 
 

925B 04°12.24 N; 
43°29.34 W 

95.16 3.2 Myrs (Chaisson  
and Pearson, 1997;  
Bickert et al., 1997) 

 

3.2 Material 

Five samples have been selected at a time-slice 3.2 Ma from ODP Sites 502, 659, 661, 

667 and 925 (Figure 3.1). These sites were selected for their excellent carbonate preservation 

and high menardiform globorotalid abundance. Isochronous samples were determined using 

available range charts and age models reported in the respective volumes of the ODP (see 

Table 1). The age model for Site 502 follows the one given in Knappertsbusch (2007) which 

relies on the stratigraphic investigation of Keigwin (1982). The age models for Sites 659, 661, 

and 667 were derived from planktonic microfossil range charts given in the Neptune database, 

and are based on initial ODP report for Leg 108. The planktonic foraminiferal assemblages of 

Chaisson and Pearson (1997) and benthic δO18 ratio of Bickert et al. (1997) were used for 

Site 925. Numerical ages follow the chronology of Berggren Kent (1995). The 

biogeochronological nomenclature follows that of Gradstein et al. (2004). 
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Figure 3.2: Flow chart illustrating the steps of sample and image processing, morphometric measurements 

and analysis. The names of the programs are shown in italic. 

 

3.2.1 Sampling strategy 

Pliocene menardellid shells are not equally distributed within all size fractions (Bolli 

and Saunders, 1985; Knappertsbusch, 2007): specimens <400 μm occur frequently in Pliocene 

assemblages, while larger specimens are rare. A random sampling would therefore lead to an 

underestimation of morphological variation found in the largest specimens. In this study, we 

select an equal number of specimens from seven successive size fractions (see next section) 

instead of randomly selecting specimens in the whole size range. The consequence is that 
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large specimens receive a greater weight to the overall morphological signal while the weight 

of the dominant smaller specimens is decreased. 

In order to analyze the overall menardellid distribution, however, the relative 

importance of each size class must be corrected. Menardellid specimens are counted before 

picking and their absolute abundance is determined in each size class of the respective split. 

Individual frequencies are corrected by statistically weighing each specimen frequency in a 

size fraction with respect to the absolute abundance of menardellids in that size fraction, using 

the factor Fc according to the following formula:  

FC = NS / Np 

Fc is the correction factor attributed to specimens that belong to size class S, Ns is the 

absolute number of menardiform specimens within size class S, and Np represents the number 

of picked specimens in the size fraction S. 

 

3.2.2 Laboratory processing 

A complex protocol for laboratory analysis and statistical treatment was applied (see 

Fig. 2). Sediment samples were weighed and washed through a 63 μm sieve under tap water. 

The residual fraction was dried for 24 h at 50 °C and weighted again to obtain the dry weight. 

Each sample was then divided into seven fractions,  i.e. <100 μm, 100 μm–200 μm, 200 μm–

300 μm, 300 μm–400 μm, 400 μm–500 μm, 500 μm–600 μm and >600μm through sieving; 

the size class <100 μm was not analyzed. After sieving, size fractions were split when needed. 

Whenever possible, 120 menardiform specimens were randomly picked from each size 

fraction. Individuals were then mounted in keel view (i.e., the shell stands on the keel with the 

umbilical side to the right, and the aperture facing upward) on multicellular faunal slides. Only 

well preserved specimens were collected.  

Individuals were then imaged using AMOR, a fully automated device for orientation 

and digital image acquisition of microfossils (Knappertsbusch et al., 2009). The AMOR 

consists of a motorized four-axis tilting and gliding stage for automatic positioning, under a 

binocular microscope equipped with a digital video camera. The microscope is driven by 
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motorized focus and zoom. All components are controlled by software written in Lab View. 

The AMOR is capable of automatic movements from one specimen to the next, to change the 

orientation of each specimen, and to capture their images. The AMOR orients menardiform 

shells into the optimal keel view (see Knappertsbusch, 2007). Optimal position is reached 

when the apex is visible on the left side of the profile, with the aperture being central (Figure 

3.3).  The AMOR robot has difficulties to orient deformed, aberrant or highly asymmetric 

forms, such as variants of G. (M.) menardii with a flexuose final chamber. In such cases, 

manual corrections were applied. 

A total of 3132 menardellids were analyzed. All material and prepared slides are 

deposited in the collections of the Natural History Museum, Basel. 

 

 

3.3 Measurements and analysis 

3.3.1 General aspects of the shell 

Specimens are analyzed without any prior taxonomic classification within the 

menardellid clade. For each shell, coiling direction, number of chamber in the final whorl, test 

luster, and possible deformation of the last chamber (flexuosa versus normal) were first 

evaluated under the binocular microscope. The relative abundance of right-coiled and left-

coiled specimens is not further discussed. However, dextral specimens dominate strongly the 

menardellid assemblage (>98%) without showing any significant biogeographic trends. 

Because many shells display differences in wall structure, tests are categorized into shiny tests 

(SH) or non shiny tests (NSH). Shiny tests are characterized by a highly reflective chamber 

surface due to a fine and dense perforation. Specimens are designated as flexuosa variants 

when the last chamber was strongly flexed.  
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Figure 3.3: Morphometric parameters measured in a menardellid shell. (A) Sketch of a menardellid 

specimen in keel view. (B) Outline of the same specimen illustrating the morphological parameters 

measured in this study: spiral height (δX), axial diameter (δY), keel view global area (GA), spiral side 

inflation (δS), umbilical side inflation (δU), and upper and lower keel angle (φ1 and φ2). 

 

3.3.2 Outline analysis 

The outline analysis of the shells in keel view follows the method described in 

Knappertsbusch (2007). Gray scale pictures are converted to black and white binary images 

and saved in raw format using ImageJ macros written by the authors. The outline coordinates 

are extracted from pictures in batch mode using modified versions of the suite of Fortran 77 

programs described in Knappertsbusch (2004) and Knappertsbusch (2007). From the outline 

coordinates, a set of morphological parameters is derived using Windows' versions of the 

programs Sprep (Knappertsbusch, 2004), Approjwin and Shaperwin (written by the authors). 

The parameters include: keel view global area (GA) and perimeter length (P), spiral height 

(δX), maximum axial diameter (δY), spiral and umbilical side inflation (δS and δU 

respectively), and upper and lower keel angle (φ1 and φ2) (Figure 3.3).  
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From these measurements four shape factors were calculated, which were adapted from 

the size invariant morphometrical descriptors of Kucera and Kennett (2002) i.e.: 

Compactness factor: Fco = P² / 4π GA 

Elongation factor: Fel = π δY2/ 4 GA 

Circularity factor: Fci = P/2√(π GA) 

Symmetry factor: Fsy = δS/δU 

P (in mm) and GA (in mm2) represent the perimeter and the area enclosed by the 

outline of the test in profile view, δY the maximum axial diameter, and δS and δU the spiral 

and umbilical side maximum width (all in μm). Fco is minimal and equals 1 for a disk, and 

reaches highest values for elongated objects. Fel becomes 1 for a disk and infinite when the 

area approaches to zero. Fci represents the difference between the perimeter of the object and 

he perimeter of a disk with the same area. It equals 1 if the object is perfectly circular. The 

symmetry factor Fsy becomes 1 for a symmetric test. It is less than1 for an umbilically inflated 

test and greater than 1 for spirally inflated test.  

Bivariate plots of δX versus δY are constructed to describe ontogenetic morphologic 

differences between specimens and through geography. To represent directions of 

ontogenetical changes, linear regressions were applied using the least square method 

implemented in the software Origin. 

 

3.3.3 Frequency analysis 

Global test area (GA in mm2) of the keel view was taken as the main size estimator, 

representing a proxy for shell volume (Spero et al., 1991; Schmidt et al., 2006). Values of GA 

were then converted to size frequency distribution (SFD) in each sample. According to Peeters 

et al. (1999), SFD of living species can be described by superposition of two distributions of 

which the Gaussian term describes the adult portion while the exponential term describes the 

juvenile fraction of the ancient population. However, the juvenile part of the population is 

often subordinate in sediments, due to a greater residence time in the water column of small 
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specimens, predation, dissolution, and/or population dynamics (Berger, 1971; Peeters et al., 

1999). For these reasons the exponential term is often not present in sediment, and the fossil 

population can be approximated by a dominating univariate Gaussian term: 

YC = A/ W√(π/2) e(−2 (X−Xc)²/w²)  

The constant A characterizes the curve amplitude, Xc denotes the mean of the variable 

and Ws the standard deviation. Differences between SFDs were employed in order to filter out 

specific frequency trends per locality. For this approach, frequency histograms were 

established using a bin width of 0.01 mm2. This numerical common bin value was determined 

using the square root methods for Site 502: 

H = Max(x)/√N 

Where H stands for bin width, N represents the number of data points in the sample, 

and Max(x) the highest value (Scott and David (1979)). SFDs of menardiform populations 

were then modeled using the aforementioned Gaussian term.  

 

 
 

Figure 3.4: Detailed size analysis construction steps of a virtual sample (modified from Peeters et al., 1999). 

Absolute frequencies per size interval are calculated after correction for splitting using the procedure 

described in part 2.1. (A) Construction of the SFD from size frequency histogram by curve fitting. (B) 

Construction of individual Gaussian curves by multiple Gaussian curve fitting. (C) For each frequency 

bin, the proportion of the differently chambered forms is calculated and displayed by an area plot of curve 

area. Major change in chamber number composition indicates a possible change in species composition. 

(D) Representation of the different parameter characterizing a Gaussian curve: A represents the area 

under the curve, C the modal size and W the standard deviation. 
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Because SFD histograms of Pliocene menardellids are often composed of a mixture of 

species, a multiple Gaussian curve fitting is used to isolate the different subpopulations. The 

assumption is that specific menardellid distributions are unimodal about the mean size Xc of 

particular species (Figure 3.4). The number of Gaussian distributions to investigate was set in 

order to have the lowest number of components (Goshtasby and O'Neill, 1994).  

 

3.3.4 Multivariate analysis 

Principal component analysis (PCA) was applied on the entire set of morphometric 

measurements from all localities (i.e. all measurements and factors except coiling direction 

and shininess). All variables are previously normalized using a correlation matrix. Values and 

loadings of the first two PCA axis values are compared in order to describe clusters within 

menardiform globorotalids. 

 

3.3.5 Contoured frequencies 

PCA loadings as well as δX/δY measurements were graphically illustrated using 

contoured frequency plots. Contour plotting allows the visualization of morphological trends 

and clusters among large datasets. Such diagrams were constructed by first gridding the raw 

bivariate series of data into frequencies using the program Grid_extended, modified from 

Knappertsbusch (2004). A grid-cell size of 10 μm by 20 μm was used, except for the 

construction of PCA plots that were gridded with a bin interval of 20 μm × 20 μm. These grid-

cell dimensions were empirically determined until the most robust frequency modes were 

obtained. From the frequency matrices, contour plots were generated.  

 

3.3.6 Environmental parameters 

The biogeographic distribution of menardellids is discussed in relation to 

environmental parameters. For this purpose, the PRISM3 annual SST reconstructions database 
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(Haywood et al., 2000; Dowsett and Robinson, 2007; Salzmann et al., 2008; Dowsett and 

Robinson, 2009; Dowsett et al., 2009) is compared to the menardiform abundance. The 

PRISM database relies on microfossil species assemblages, Mg/Ca ratios, and alkenones 

paleotemperature proxies.  

 

 

 

Figure 3.5: Size frequency distributions of the two West Atlantic localities. Absolute frequencies are 

previously corrected using the procedure described in part 2.1. (A) ODP Site 502 (Caribbean Sea) and (B) 

ODP Site 925 (Brazilian margin). (1) SFD of menardiform globorotalids obtained by fitting a curve to size 

distribution histogram. (2) Decomposition of the SFD in multiple Gaussian shaped curves representing the 

different menardiform populations. (3) Proportion of the different chamber variants per frequency bin 

shown in the left panels. 
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3.4 Results 

3.4.1 Size analysis 

The SFDs of menardellids are considered to represent the sum of the Gaussian 

distributions from mature populations of the involved species. Multiple Gaussian fits to SFDs 

leads to the recognition of three majors modes at each locality, to which we assign the three 

informal designations A (small), B (intermediate) and C (large) (Figures 3.5 and 3.6). Two 

additional populations are sporadically encountered, which are denominated as C′ and D. 

Modes of populations A, B and C remain stable in the five locations studied. Changes in 

populations are reflected by abrupt changes in the distribution of the number of chambers. The 

rapid increase to six chamber forms delimits the boundary of populations A and B, while the 

increase to seven chamber forms delimits the boundary between populations B and C. The 

relative abundances of these three populations allow the recognition of a biogeographic 

separation into a Western Atlantic province and an Eastern Atlantic province.  

3.4.1.1 Western Atlantic province 

The Western province covers the Caribbean Site 502 and Site 925 off Brazil (Figure 

3.5). These sites share a common abundance pattern regarding populations A, B and C 

(Figures 3.5A and 3.5B). Menardellid absolute frequencies decrease with size. Small 

specimens (population A) dominate the overall menardellid composition, while the larger 

forms (populations B and C) are subordinate.  

At ODP Site 502 (Figure 3.5), the mode of population A occurs at 0.038 mm², its size 

maximum is at 0.098 mm² (Figure 3.5A). The Brazilian Site 925 shows a smaller modal 

position of population A at 0.022 mm², while its size maximum is at 0.053 mm² (Figure 3.5B). 

Population B shows a similar trend at the two Western localities. The position of the mode is 

at 0.076 mm² and 0.083 mm² at Sites 502 and 925, respectively. Size maximum of population 

B is also similar in the two localities, at 0.18 mm² and 0.20 mm². However, the relative 

abundance of these individuals is higher in the Caribbean Sea. The geographic distribution of 

population C is similar to population B. Only slight differences exist in modal size between 

Sites 502 and 925; the modal size is smaller at Site 502 than at Site 925, 0.136 mm² and 0.160  
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Figure 3.6: Size frequency distributions of the three East Atlantic localities: Absolute frequencies are 

previously corrected using the procedure described in part 2.1. (A) ODP Site 667 (open ocean), (B) ODP 

Site 661 (Mauritanian upwelling) and (C) ODP Site 659 (Canary Current). (1) SFD of menardiform 

globorotalids obtained by fitting a curve to a size distribution histogram. (2) Decomposition of the SFD in 

multiple Gaussian shaped curves representing the different menardiform populations. (3) Proportion of 

the different chamber variants per frequency bin shown in the left panels. 
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mm² respectively. In contrast with populations A and B, population C displays a wider 

distribution over the size spectrum. At ODP Site 925, a fourth population D is present (Figure 

3.5B) which is visible by a peak around 0.05 mm². This peak is marked by a punctual increase 

of specimens with six and seven chambers in the last whorl.  

3.4.1.2 Eastern Atlantic province 

The Eastern Atlantic province includes the three ODP Sites 659, 661, and 667. They 

form a north–south transect extending from the east Atlantic upwelling centers to more open 

Atlantic areas (cf. Figure 3.1). The three sites share a common trend with respect to 

abundances of populations A, B, and C: they are characterized by a higher ratio of large 

specimens in comparison to the Western Atlantic province (Figure 3.6). 

The ODP Site 667 represents an intermediate case in between Eastern and Western 

provinces (Figure 3.6A). There, most menardellids are divided into populations A (mode at 

0.049 mm2) and B (mode at 0.092 mm2). The abundance of population C is relatively low in 

comparison (mode at 0.140 mm2), reaching a maximum of 0.32 mm². Notably, specimens of 

Site 667 show a higher chamber number per whorl in each size range relative to the other 

localities (Figure 3.7A). The keel-view area size spectra reach the highest values at Site ODP 

661 (Figure 3.6B), where an extra group C′ populates the highest size range. Population A 

occurs in low abundance in comparison to the other populations B, C, and C′. The modal 

positions of these populations are 0.041, 0.106, and 0.193 mm² respectively, higher than those 

at the other locations. ODP Site 659 (Canary Current) exhibits smaller specimens than Site 

661 (Figure 3.6C). Population A is characterized by a sharp peak with a mode of 0.024 mm2. 

Population B is the dominant one, with a mode at 0.068 mm². The Gaussian modeling 

suggests the existence of a relatively important proportion of population C, with a smaller 

mode at 0.124 mm². 

 

3.4.2 Spiral height (δX) versus axial length (δY) 

The ratio of spiral height (δX) versus axial length (δY) in profile view (see Fig. 3) was 

initially employed by Knappertsbusch (2007) to distinguish Pleistocene G. (M.) menardii 
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menardii from G. (M.) menardii cultrata. Although profile and spiral view parameters are 

correlated to each other, the keel view aspect expresses the geometric evolution of shell 

morphology through ontogeny better than spiral view. δY is a good proxy for the general size 

of the test, while δX shows a good correlation with shell weight (Regenberg et al., 2010). The 

combination of both δX and δY describes the morphological variation of menardiform shells: 

the test shape ranges from massive thick and compressed morphologies, located in the middle 

right part of a bivariate δX versus δY diagram, to delicate and elongated morphologies in the 

upper left corner. Frequency distributions, within contour plots, are more likely to reflect 

preferential allometric trends across the entire size range than population structure. We 

compared morphological change directions using linear regressions (Figure 3.7F). At all 

localities, the number of chambers per whorl increases with test size. 

At Site 502 (Figure 3.7A), menardellid shells show a progressive thickening of the test 

with size increase, leading to thick and inflated morphologies. All individuals are arranged 

along an initially narrow, but then successively broadening morphological continuum. To 

describe this trend, a linear regression is performed on the entire sample, leading to the 

establishment of the regression line RL1 (δY=2.6 δX−77, Figure 3.7A). The line RL1 

represents the most common, preferential menardellid allometric growth direction, observed at 

ODP 502 locality. In order to compare the biogeographic evolution of morphology, this line is 

taken as a reference trend and then reproduced on other locality diagrams. This locality is 

chosen as a reference because it shows the lowest morphological variability: all specimens are 

distributed along a single direction, showing no sign of morphological divergence. 

Biogeographic differences are therefore visually investigated with respect to RL1. Most of the 

North Tropical Atlantic specimens follow a very similar line (Figure 3.7B–E). However, 

morphological variation at ODP Site 661 diverges from Site 502 (RL1, Figure 7D). In the 

upper part of the diagram (above a δY value of 600 μm) some specimens can be distinguished 

from other menardellids under the binocular by a distinct flexure of their final chamber. A 

linear regression performed on specimen presenting a deformed last chamber generates the 

regression line 2 (RL2) (equation δY=0.9 δX+522), which indicates that these specimens 

follow a different morphological trend. The line RL2 corresponds to a rapid increase of spiral 

height with size; specimens are characterized by a thick, robust morphology.  
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Menardellids at ODP Sites 659 and 667 show two distinct directions of morphological 

changes that converge as size decreases (Figure 3.7C, E). Some specimens are aligned on RL1 

while others follow another trend that represents a morphological evolution toward thinner and 

elongated forms.  

The line L1 is drawn visually in order to represent these separated allometric directions 

(Figure 3.7C, E). The ODP Site 667, moreover, located in the middle of the four other 

localities (Figure 3.7C), shows the widest morphological distribution. RL1 and RL2, as well as 

L1 are present in this locality. Specimens with shiny and delicate tests (SH) follow two 

distinct, different morphological directions. At Site 925, (Figure 3.7B) a linear regression on 

SH specimens leads to the establishment of regression line SH1 (equation: δY=2.1 δX+58). 

This trend corresponds to a rapid increase of δX value with size. In contrast, linear regression 

applied to Site 667 shiny specimens (Figure 3.7C) yields the equation δY=3.8 δX−177 

(regression line SH2). These specimens develop an extremely flat and elongated morphology.  

 

3.4.3 Differential diagnosis 

3.4.3.1 Classification concepts 

Morphotypes are morphological variants within a single species that share a common 

morphology. A particular morphotype differs from another by a set of morphological data. 

The term morphospace defines the space span by all possible, independent morphological 

descriptors. Within the morphospace, morphotypes may occur as isolated clusters, or as 

clusters aligned showing a particular trend. Such morphological trends can vary with 

geography or follow ecological gradients: they are then called morphoclines. The 

morphological boundaries of a given morphotype may vary with geography.  

A morphocline represents a directional trend in morphospace changes, correlated with 

an ecological gradient. Thus, the succession of morphotypes according to size is considered a 

morphocline, as size difference reflects difference in ecological niches (Al-Sabouni et al., 

2007). We investigate the occurrence of morphotypes within the subgroups extracted from the 

SFD (see Section 4.1). Means (C) and standard-deviations (W) (see Figure 3.4) of each  
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Figure 3.7 (on previous page): Biogeographic variation of bivariate measurements: δX (spiral height) 

versus δY (axial diameter). Graphics are organized following their relative geographic distribution. (A)– 

(E) For each locality, a number of chamber dependent scatter plot and a contour plot is displayed. Shiny 

tests are merged together and plotted regardless of chamber number, for clarity reasons. Dotted lines 

represent the axes of morphological variation. (F) General caption including a map showing the 

geographic distribution of localities, color scale and scatter plot caption.  

 

population were translated to size versus δY/δX ratio diagram. The boundaries of these 

subgroups, delimited by two W values, define the morphological boundaries of a morphotype. 

Contour diagrams facilitate the identification of the different morphotypes and possibly their 

clinal variation according to δY/δX values. The difficulty is that the frequency distribution in 

such a diagram may result from a combination of ontogenetic growth trends as well as in test 

geometry. The limits on y-axis of such a boundary diagram are estimated visually on the basis 

of minimum overlap of frequency contours.  

Figure 3.8 displays an example of the establishment of three morphotypes at the 

Caribbean Site ODP 502. As a first step, limits of the respective areas are defined by the 

respective means and standard deviations of each of the subgroup (Figure 3.8A). These values 

are then projected on the axis of size versus the δY/δX ratio (Figure 3.8B), in order to define 

three distinct morphotypes and their associated morphospaces (Figure 3.8C).  

3.4.3.2 Morphotype extraction 

Figure 3.9 illustrates the respective contoured keel view versus δY/δX diagrams, as 

well as the derived morphological diagrams for the remaining ODP Sites 659, 661, 667 and 

925. The test aspect along with the flexure of the last chamber are both used as secondary 

criteria for morphotype establishment. Seven different morphotypes could be found this way 

at the studied localities. Among these, three main morphotypes can be separated within 

menardiforms, corresponding to populations A, B, and C as described in Section 4.1.  

Morphotypes MA and MB coincide with the two first Gaussian modes A and B. They 

occur in relatively high abundances at the five sites (Figures. 3.8, 3.9A, B, C, and D). 

Morphotype MA is concentrated in the smaller part of the size spectrum and occurs in relative 

high abundance at all sites. It shows only a few variations in size and morphology through  



Chapter 3: Tropical Atlantic morphological variability 

 72 

 

Figure 3.8: Detailed differential diagnosis construction steps at ODP Site 502. (A) Gaussian intervals are 

extracted from SFD. (B) These intervals are translated to the δY/δX versus size diagrams: The width of a 

"morphotype box" was taken as plus or minus 2 standard deviations () from the mean Keel view area. 

The height of a morphotype box was taken as the intersection of the vertical line through the mean keel 

view area with the drawn base-contour line. Frequencies are corrected before plotting in order to remove 

the effects of sampling per size fraction. (C) Three morphotypes are established, including their 

morphological boundaries. δX versus δY regression lines illustrated in Figure 8 are converted and 

displayed. 

 

geography. It is characterized by a rapid increase of δY/δX with increasing keel view area, 

which corresponds to a preferential increase of shell diameter with size (Figure 3.9A, B, C, 

and D). Morphotype MB is characterized by a slower increase of δY/δX ratio and an 

intermediate size (Figure 3.9A, B, and C, D). Its presence is particularly prominent at ODP 

Site 661, off Mauritania; it can be seen in the central high frequency contour (Figure 3.9D). 

The third Gaussian mode C consists of two distinct morphotypes denominated as MC1 

and MC2. Their similar size ranges cause a strong overlap in SFD. Morphotype MC1 (Figure 

3.9A, C) is characterized by high values of the δY/δX ratio, which means an elongated and 

thin shell morphology. MC1 makes up the large menardiforms at Sites 667 and 659; 

corresponding to specimens distributed along L1 (Figure 3.7C and E). In comparison to MC1, 

morphotype MC2 shows a slower increase of δY/δX with size. The tests of MC2 are thicker, 

showing a more robust aspect than MC1. This property is the most common diagnostic feature 

of the MC morphotypes. At Site 661 and Site 667, morphotype MC3 corresponds to 
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population C′ (Figure 3.9B, C). It is characterized by a decrease of the δY/δX ratio, which 

means a preferential increase of shell thickness with size. Specimens that belong to MC3 

include strongly flexed forms, which strongly increase the keel view area.  

 

 

 

Figure 3.9: Differential diagnosis: area versus δY/δX ratio. Frequencies are corrected before plotting in 

order to remove the effects of sampling per size fraction. (A) ODP Site 659 frequency distributions, 

morphotypes and associated boundary distribution (B) Site 661 (C) Site 667 (D) Site 925. 

 

Tests with a shiny surface are classified in two additional morphotypes, SH1 and SH2, 

in function of their size range and their δY/δX ratio value. They occur in relatively low 

abundance, only sparsely distributed in the equatorial samples from Sites 925 and 667 (Figure 

3.9C, D). Morphotype SH1 represents the most abundant, and the smaller of the two light 

encrusted morphotypes, corresponding to population D (see Figure 3.5B). SH1 morphospace 

strongly overlaps MB's, but their δY/ δX ratio decreases with size (Figure 3.9D). Conversely, 

specimens that belong to morphotype SH2 are characterized by an extremely thin and 
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elongated shell, which corresponds to a very fast increase of δY/δX with size. As it is only 

encountered in very low abundance at Site 667, the SFD of SH2 is not visible. However its 

morphospace is clearly separated, as seen in Figure 3.9C.  

3.4.4 Principal component analysis 

 To further confirm the separation of the morphotypes, a subsequent principal 

component analysis was carried out. The inputs of the analysis included all measured primary 

variables including δX, δY, δS, δU, φ1, φ2, GA, and P, as well as shape factors Fco, Fel, Fci, 

and Fsy (see Section 3.3). All variables were standard-normalized before they were submitted 

to PCA to make them dimensionless.  

 

 

 

Figure 3.10: Plots of loadings of the first PCA axis against the loading along PCA axis 2. (A) Raw scatter 

plot of PCA loadings. (B) Contoured distribution of morphotype under consideration. The scaling is 
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enlarged for better visibility reasons. (C) PCA loadings showing relative distribution of morphological 

variables. 

  

 Figure 3.10A and B shows the position of specimens and morphotypes in the new 

morphospaces which are spanned by the first and the second principal components axes 

(PCA1 and PCA2, respectively). These two axes contribute 68% and 16% of the total 

variance, respectively. In this morphospace, morphotypes MA, MB and MC show the best 

separation along the first PCA axis whereas the second separates MC1, MC2 and MC3 from 

the remaining morphotypes (Figure 3.10B). Each morphotype is highlighted as a shaded area 

in the PCA1 versus PCA2 morphospace. These areas are outlined by a contour that was 

defined by the scatter data of each morphotype, and which corresponds to 2 standard 

deviations from the mean.  

 Signification of these axes with respect to morphological parameters is given in Figure 

3.10C. Within this PCA morphospace, two directions of change are identifiable: the first 

direction combines the variations of size dependant parameters (δX, δY, δS, δU, GA and P). 

The other axis represents size invariant shape factors (Kucera and Kennett, 2002) and keel 

angles φ1 and φ2. Size is therefore the most important parameter to distinguish between MA 

and MB morphotypes. In size values >700 μm (δY value), however, test shapes start diverging 

into different subgroups. Morphotypes MC1, MC2, and MC3 can be differentiated according 

to their shape factor values. SH1 and SH2, on the other hand are distributed along axis B 

because elongation and compactness factors are the most efficient parameters to distinguish 

them.    

 

3.5 Discussion 

3.5.1 Implications for systematics 

In order to define the Pliocene menardiforms morphotypes in relation with formal 

taxonomical units, we attempt to link the analytically found morphotypes to species or sub-

species described and illustrated in Stainforth et al. (1975), Kennett and Srinivasan (1983), 

and Bolli and Saunders (1985).  
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Morphotype MA (Plate 1G1-3) best corresponds to G. (M.) menardii (Parker et al., 

1865). It includes middle Miocene "menardii A" of Bolli and Saunders (1985). It is 

represented in the PCA diagram by the cluster that displays the most negative values along the 

first PCA axis (Figure 3.10A, B).  

Morphotype MB (Plate 1E1-3) (Figure 3.10B) is best represented by G. (M.) limbata 

(Fornasini, 1902), including menardii B of Bolli and Saunders (1985). It most commonly 

holds six to seven chambers in the last whorl, specimens reaching rarely eight chambers in the 

last whorl. The distinction between morphotypes MA and MB relies essentially on size as they 

share a similar morphology. A strong continuity between MA and MB morphologies makes 

the visual distinction difficult.  

Morphotype MC2 (Plate 1B1-3) fits best with G. (M.) multicamerata (Cushman and 

Jarvis (1930)) (Figure 3.10B). Morphotype MC1 (Plate 1A1-3) is interpreted as a second 

variant of G. (M.) multicamerata (Cushman and Jarvis (1930)) that developed an elongated 

test and a decreasing chamber number per whorl in comparison to MC2, similar to G. 

pertenuis. Morphotype MC3 (Plate 1D1-3) is proposed as a third variant of G. (M.) 

multicamerata, including specimens with a flexuous final chamber. It is characterized by a 

very robust test and a strong keel.  

Morphotype SH1 (Plate 1F1-3) is similar to G. (M.) exilis (Blow, 1969). It can be 

distinguished from morphotype MB by its shiny test and from SH2 by its relative thickness in 

keel view.  

Morphotype SH2 (Plate 1C1-3) is tentatively assigned to G. (M.) pertenuis (Beard, 

1969). In our material, SH2 only occurs in very low abundance (<1%); this morphotype is 

therefore difficult to characterize accurately. SH2 is morphologically convergent with MC1 

but can be distinguished by its position in the lower right quadrant in the PCA diagram. It 

shares its distinct shiny surface with morphotype SH1.  
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3.5.2 Atlantic biogeographic distribution of menardellid morphotypes 

The present study considered five Tropical Atlantic samples covering different 

environmental settings: Caribbean Sea ODP Site 502, south–east of the subtropical gyre ODP 

Site 659, ODP Site 661 in the east African upwelling area, ODP 667 on the western margin of 

the Sierra Leon Rise and ODP 925 in the North Equatorial Counter Current, close to the 

Brazilian margin. 

In the Caribbean Site 502 and the Brazilian Site 925 the SST range was within 1 °C 

relative to present day conditions (Cronin and Dowsett, 1996). Studies on planktonic 

foraminifera in both sites reported similar compositions to modern assemblages (Chaisson and 

Pearson, 1997; Cullen and Curry, 1997). In contrast, the eastern side of North Atlantic at 3.2 

million years ago was warmer than at present day. Enhanced heat transport between warmer 

waters in the North-East Atlantic induced a warmer Eastern Boundary Current. Consequently, 

SST at Site 659, located in the South East boundary of the subtropical Atlantic gyre, shows an 

increase of 2 °C in comparison to present (Raymo et al., 1996; Haywood et al., 2002).  

 

 

Figure 3.11: Biogeographic distribution of the seven morphotypes under consideration. (A.) Relative 

abundance of morphotypes MA, MB, MC1, MC2, MC3, SH1, and SH2 in the five localities. (B.) Mid-

Pliocene SST reconstruction (in °C), taken from PRISM database (Haywood et al., 2000; Dowsett and 

Robinson, 2007; Salzmann et al., 2008; Dowsett and Robinson, 2009; Dowsett et al., 2009). 



Chapter 3: Tropical Atlantic morphological variability 

 78 

Sites 659, 661, and 667 are aligned along a north–south transect from East Atlantic 

upwelling zones into an open ocean. A progressive decrease in SST difference between the 

Mid-Pliocene and the modern occurred to the south. Among the three east Atlantic localities, 

upwelling conditions occur only at Site 661 (Pradhan et al., 2006). The two other eastern 

locations are documented as being overlain by non-upwelling oligotrophic water in present 

(Matsuzaki et al., 2011). In order to study the biogeographic distribution of menardellid 

morphotypes, a plot of relative abundance of the seven morphotypes versus absolute 

temperature reconstructions is carried on (Figure 3.11). Comparison of MC1 through MC3 

morphotype distribution suggests a distribution pattern driven by productivity. The abundance 

of morphotype MC3 suggests a preference for eutrophic upwelling conditions at Site 661. 

Morphotype MC1 occurs frequently at oligotrophic Sites 659 and 667. Morphotype MC2 is 

present in all localities in relatively high abundance, except in low productivity zone Sites 659 

and 667 where it is dominated by MC1.  

Morphotypes MA and MB are distributed among the Tropical Atlantic Ocean along a 

temperature driven East West trend (Figure 3.11B).Western localities show higher content of 

MA whereas MB dominates colder eastern assemblages. Both the Caribbean and Brazilian 

Sites 502 and 925 show similar conditions and foraminiferal assemblages at 3.2 Ma (Dowsett 

et al., 2009). Morphotypes SH1 and SH2 are only encountered in equatorial Sites 925 and 667 

suggesting a preference for high SST and eventually strong stratification conditions.  

 

3.6 Conclusion 

A Gaussian model was applied for morphological classification of Pliocene 

menardellid globorotalids. The application of the AMOR robot allows us to overcome the 

technical limitation in specimen numbers. The multimodality nature of size frequency 

distributions of menardiform shells reflects the presence of several specific populations in the 

sediment that overlap each other to a varying degree. Applying a Gaussian best fit method on 

combined measurements of morphological spiral height (δX) and axial maximal length (δY) 

ratio led to the identification of seven menardiform morphotypes, MA, MB, MC1, MC2, 

MC3, SH1 and SH2. Morphotypes MA and MB are assigned to G. (M.) menardii and G. (M.) 
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limbata respectively. The three morphotypes MC1, MC2 and MC3 are interpreted as variants 

of G. (M.) multicamerata. The shiny walled morphotypes SH1 and SH2 are suggested to 

represent G. (M.) exilis and G. (M.) pertenuis.  

The biogeographic distribution of these morphotypes among the five Atlantic localities 

follows two distinct trends. The distribution of MA, MB, and MC abundances, distinguished 

by their optimum size, is interpreted as dependent of SST. The abundance of MC1, MC2, 

MC3, SH1, and SH2 suggests a distribution driven by productivity. A better biogeographic 

coverage may be needed to further confirm these hypotheses.  
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Plate 3.1: Mid-Pliocene menardellid globorotalids. Specimens were imaged using a JC KY-F75U color 

video camera mounted on the AMOR binocular using with a 1.0× planapochromatic lens. 

A). ODP Site 667 morphotype MC1 (G. (M.) multicamerata). Size fraction [600–500 μm]. (1) Spiral view, 

(2) Umbilical view, (3) Keel view. 

B). ODP Site 502 morphotype MC2 (G. (M.) multicamerata). Size fraction [600–500 μm]. (1) Spiral view, 

(2) Umbilical view, (3) Keel view. 

C). ODP Site 667 morphotype SH2 (G. (M.) pertenuis). Size fraction [600–500 μm]. (1) Spiral view, (2) 

Umbilical view, (3) Keel view. 

D). ODP Site 661 morphotype MC3 (G. (M.) multicamerata). Size fraction [600–500 μm]. (1) Spiral view, 

(2) Umbilical view, (3) Keel view. 

E). ODP Site 659 morphotype MB (G. (M.) limbata). Size fraction [500–400 μm]. (1) Spiral view, (2) 

Umbilical view, (3) Keel view. 

F). ODP Site 925 morphotype SH1 (G. (M.) exilis). Size fraction [400–300 μm]. (1) Spiral view, (2) 

Umbilical view, (3) Keel view. 

G). ODP Site 502 morphotype MA (G. (M.) menardii). Size fraction [300–200 μm]. (1) Spiral view, (2) 

Umbilical view, (3) Keel view. 
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Abstract 

Proper species concepts of planktonic foraminifera are essential for paleo-

environmental studies. Although in several cases subtle but key differences indicate the 

existence of sibling species, the quantitative morphological variability of foraminifera shells 

remains still poorly documented. We present the morphological analysis of over 7500 oriented 

specimens of the subgenus Menardella (globorotalid foraminifera). Size frequency 

distributions and linear shell measurements were collected with an automated device, the robot 

AMOR. Based on the recognition of menardellid populations,  morphometric investigations in 

a total of 19 sampled distributed worldwide and at a time-slice at 3.2 Ma (Mid-Pliocene) were 

performed. Among formally established menardellid morpho-species, five populations are 

recognized, associated with eight different morphotypes. Geographic variation in morphotypes 

abundance allows the recognition of five menardellid provinces among the tropical Atlantic, 

Indian and Pacific Ocean. The results suggest that the formal morpho-species Globorotalia 

(Menardella) menardii is in fact composed of two distinct populations, which differ in size, 

morphology and biogeography. Morphological characterization of the morpho-species G. 

(Menardella) multicamerata pointed out a complex polymorphism, interpreted as a potential 

vertical distribution in the water column. 
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4.1 Introduction 

The recognition of discrete genetic types within formally established morpho-species 

has challenged our vision of planktonic foraminifera taxonomy (Kucera and Darling, 2002; 

Darling and Wade, 2008). The occurrence of sibling species overturns the morphology-based 

species concepts and classification schemes, which are traditionally applied in 

micropaleontology, biostratigraphy, and phylogenetic reconstructions. In contrast, the 

recognition of sibling species requires a profound insight of biological and ecological 

adaptations. Molecular evidence furthermore emphasizes that planktonic foraminifera are 

geographically variable organisms with parapatric to allopatric distributions, sometimes 

contrasting with the idea of cosmopolitan planktonic morpho-species (de Vargas et al., 2004; 

Darling and Wade, 2008; Sexton and Norris, 2008). Combined evidences from morphological 

and molecular analyses have lead to a better understanding of the ecological significance of 

morphological shell variability (Morard et al., 2011; Aurahs et al., 2012). These studies have 

however shown that depending on taxa, a strong morphological variability between specimens 

may exist, sometimes within the same genetic cluster (André et al., 2013; Ujie et al., 2010), 

whereas other cryptic variants could only be kept apart by subtle ultra-structural differences 

(Morard et al., 2009).  

As genetic analyses can only be practiced on living faunas, the fossil record remains 

usually out of reach for molecular studies. Morphological patterns and composition preserved 

in the fossil planktonic foraminiferal record, however, provide key information about climatic 

and environment changes through time. Although some studies have tried to recognize cryptic 

species in sediments (Kucera and Darling, 2002; Quillévéré et al., 2011), there is still limited 

progress to integrate the full morphological variability of a particular taxon into the planktonic 

foraminiferal species concept. It is still current usage that geographically distinct populations 

are characterized using the qualitative morphological description raised from a single type 

specimen (Scott, 2011). Understanding past planktonic morphological diversity on species-

level requires, at the opposite, the study of intra- and inter-population morphological 

variability on a large scale. Scott (2011) further suggested that the traditional singular 

typological model of holotype description be replaced by a population-based taxonomy. Such 

approach requires acquisition of large morphological datasets with a broad or global 
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geographic coverage. Here, it is attempted to arrive at such a perspective by mapping the 

biogeography of shell variation of a species plexus on a global scale. 

 

 

 

Figure 4.1: Hypotheses about phylogenetic relationships of menardellid globorotalids. (A) As interpreted 

from the descriptions given in Bolli and Saunders (1985). (B) Modified from Kenneth and Srinivasan 

(1983). (C) Modified from Cifelli and Scott (1986) and adapted to the biostratigraphic and 

magnetostratigraphic time scale of Gradstein et al., (2004). The benthic δ18O record is from Lisiecki and 

Raymo (2005). The dashed horizontal line marks the stratigraphic position of the 3.2 Ma times slice 

investigated in the present work. 

 

For this purpose, menardellid globorotalids are a promising planktonic foraminiferal 

lineage to investigate. The subgenus Menardella forms a subset of the formal genus 

Globorotalia, which includes all species related to the extant Globorotalia (Menardella) 

menardii. Their occurrence is limited to few extant forms in the tropics and subtropics, but the 

menardellid plexus comprised several lineages in the past. Menardellid species have a strong 

tendency to homeomorphy: they developed the lenticular trochospiral, disk-like shell with 
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prominent keel morphology of their supposed ancestor (Kennett and Srinivasan, 1983). They 

exhibit however considerable size- and shell-morphological plasticity. For these reasons the 

definition of menardellid morpho-species remained often difficult, leading to an intricate 

taxonomy. The evolutionary relationships between the different menardellid species are still 

under debate (Figure 4.1). 

In a previous pilot study we have tested the method of population-based morphotype 

identification using 5 selected key-sites during a Mid-Pliocene time-slice at 3.2 Ma in the 

Tropical Atlantic (Mary and Knappertsbusch, in press). The present work extends this tropical 

Atlantic menardiform experiment from the same 3.2 Ma old Mid-Pliocene time-slice to a 

global scale, including ODP sites from the Atlantic, Pacific and Indian Oceans. This time-slice 

at 3.2 Ma was selected because most menardellid morpho-species are documented to coexist at 

that time (Kennett and Srinivasan 1983; Bolli and Saunders 1985; Chaisson, 2003). The 

recommendations suggested by Scott (2011) are taken as a starting argument, which means 

that the study relies on a population-level analysis rather than taking single types for 

identification and derivation of morphotypes. This taxonomical approach is pursued to arrive 

at a more reliable menardellid taxonomic diagnosis, biogeography, and diversity estimation. 

 

4.2 Settings 

4.2.1 Global tropical Mid-Pliocene time-slice 

The present work concentrates on a specific time frame at 3.2  Ma, which falls in the 

last warm Pliocene interval (about 3.3 to 3 Ma) before the onset of the northern hemisphere 

glacial/interglacial oscillations (Poore, 2007). At that time, the continental paleogeography, 

ocean basins, and major currents are to some degree similar to modern conditions: 

atmospheric CO2 concentrations were comparable to present industrial concentrations (Foster 

et al., 2009; LaRiviere et al., 2012), and many extant planktonic foraminifera species already 

existed at that time (Dowsett and Robinson, 2007; Lutz, 2011). The Mid-Pliocene 

environment was different, however, in several aspects too. The average temperature was 3°C 

warmer than present day (Haywood and Valdes, 2004; Jansen et al., 2007). The warming was 
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more accentuated in polar regions (Fedorov et al., 2006), and northern hemisphere ice 

coverage was very limited. The eustatic sea level was approximately 25 m higher than today 

(Dowsett 2007; Dwyer and Chandler 2009).   

In the Pacific Ocean, east-west temperature gradients were strongly reduced (Wara et 

al., 2005; Deckens et al., 2007). The tropical Pacific was suggested to be characterized by a 

permanent el Niño phenomenon (Philander and Fedorov 2003; Wara et al., 2005; Fedorov et 

al., 2006; Bonham et al., 2009) and the western Pacific Warm Pool was expanded poleward 

(Brierley et al., 2009). Cold water zones were reduced in upwelling zones off the western 

coast of South and North America until 3 Ma, (Fedorov et al.,  2006, Fedorov et al., 2013). 

However, recent results suggest that productivity was already high since 3.5 Ma in the East 

Pacific region (Steph et al., 2010), the early cooling of the East Pacific cold tongue beginning 

between 4.3  Ma and 3.6  Ma (Lawrence et al., 2006; Dekens et al., 2007).  

During the Mid-Pliocene, circulation patterns through tropical gateways, i.e. the 

Indonesian Gateway and Central American Seaway (CAS), were reduced (Srinivasan and 

Sinha, 1998; Karas et al., 2009; Karas et al., 2011). The restriction of the Indonesian Gateway 

between 3.5 and 3 Ma induced a distinct cooling of Indian Ocean surface waters (Karas et al., 

2009). The closure of the Isthmus of Panama led to an intensification of Atlantic Meridional 

Overturning Circulation (AMOC) (Haug and Tiedemann, 1998; Lunt et al., 2008; Haywood et 

al. 2009). At 3.2 Ma, the water mass exchange was still possible through the CAS, but a 

critical threshold of communication limitation was reached since 4 Ma (Steph et al., 2010).  

 

4.2.2 Mid-Pliocene menardellids 

The diversity of menardellids during the Mid Pliocene was high. They are classified 

into two main lineages: the G. (M.) menardii - G. (M) multicamerata and G. (M.) menardii - 

G. (M) pertenuis lineages. These two branches can be distinguished by the reflectivity of their 

test surface: Representatives of the G. (M.) menardii - G. (M) pertenuis lineage display a 

delicate, reflective surface caused by a fine wall perforation. In contrast, the G. (M.) menardii 

- G. (M) multicamerata lineage shows a less reflective surface with a coarse pore density and a 
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tendency to build stronger calcified tests. However, infilling sediment or poor preservation can 

easily affect the reflectance of the test.  

The phylogeny of menardellid globorotalid remains unclarified. Figure 4.1 illustrates 

three different phylogenetic hypotheses derived from the descriptions in Bolli and Saunders 

(1985) (Figure 4.1A), from the Kenneth and Srinivasan (1983) (Figure 4.1B) and from Cifelli 

and Scott (1986) (Figure 4.1C). These hypotheses are based on qualitative visual 

classification, without quantitative shell measurements. Among all, the origin of G. (M). 

miocenica is most controversial. Bolli and Saunders (1985) introduced the G. (M.) menardii -

G. (M.) pseudomiocenica- G. (M.) miocenica lineage (Figure 4.1A), whereas G. (M.) 

pseudomiocenica is considered synonymous to G. (M.) exilis (Figure 4.1B and C) (Kenneth 

and Srinivasan, 1983; Cifelli and Scott, 1986). The phylogenetic position of G. (M.) limbata is 

also unresolved.  

Micropaleontologists working with menardellids are often confronted with the 

complex morphological intergradation, rendering the classification difficult, even in the 

presence of statistical morphometric data (Knappertsbusch et al. 2007; Regenberg et al., 

2010). The morphological taxonomic criteria are highly variable between populations and with 

geography (Bolli and Saunders, 1985; Chaisson, 2003). The number of chambers per final 

whorl, which is often applied as a diagnostic descriptor (i.e. 5-6 in G. (M.) menardii, 6-8 in G. 

(M.) limbata, >7 in G. (M.) multicamerata) is a strongly allometric feature (Mary and 

Knappertsbusch, in press). Limbation, which is the extension of the suture over the carina, and 

which is commonly used to separate G. (M.) menardii from G. (M.) limbata (Chaisson and 

Leckie; 1993) is extremely difficult to apply in practical surveys. Ventral or spiral side 

inflation is a function of ontogenetic maturity of the specimens, and hampers differential 

diagnosis as well. 

Previous work suggests that Mid-Pliocene Atlantic menardellids are composed of 

seven different morphotypes, based on size frequency distribution and morphometric analyses 

(Mary and Knappertsbusch, in press). In the latter, morphotypes MA and MB have been 

assigned to the formal species G. (M.) menardii and G. (M.) limbata respectively, both mainly 

separable by size. Within G. (M.) multicamerata, three morphotypes were distinguished, 

informally named MC1, MC2 and MC3. Morphotype MC2 matches best with the traditional 
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description of G. (M.) multicamerata described in Bolli and Saunders (1985) or Kennett and 

Srinivasan (1983). Morphotype MC1 displays a distinctly thin, elongated morphology, with a 

reduced number of chambers in the final whorl (7 to 8) in comparison to other morphotypes of 

G. (M.) multicamerata (rather 9-10 in the last whorl). Morphotype MC3 shows a typical 

robust, thick and multi-chambered shell, with a flexed final chamber. Two additional 

morphotypes SH1 and SH2 were isolated according to their shiny wall surface, and were 

respectively attributed to morpho-species G. (M.) exilis and G. (M.) pertenuis. 

 

4.3 Materials 

All morphometric data were raised from 3.2 Ma old samples coming from 29 ODP sites 

(Figure 4.2 and Table 4.1). Only 19 samples were of reasonable quality, while samples from 

the remaining 10 ODP sites showed to be barren in menardellid specimens. For core site 

selection the biogeographic distribution map of modern menardellids of Bé and Tolderlund 

(1971) was consulted. For proper identification of the 3.2 Ma old time level in each core, 

reliable stratigraphic datums were taken from the range charts of the respective Initial and 

Scientific Reports of the ODP. These included magnetic reversals, FADs and LADs of 

planktonic microfossils (calcareous microfossils, planktonic foraminifers and diatoms), and 

oxygen isotope datums. In order to maintain inter-comparison to the previously studied cores 

in Knappertsbusch (2007) all ages were magnetically converted to the Berggren et al., (1995) 

integrated time scale. Numerical age models and calibration of absolute ages from core depth 

were obtained using the Neptune online tool, the age-depth plot and the agemaker software 

that was developed by Lazarus (1995) and Lazarus et al., (1992). Table 4.1 indicates the 

sources of age models per samples, as well as the number of menardellid specimens analyzed.  

In the Atlantic sector, seven sites were selected, extending from the Caribbean Sea to 

the Tropical East Atlantic (Figure 4.2). In the south Atlantic Sites 532 and 1082, no 

menardellid was encountered in our samples at 3.2 Ma although menardiforms are known to 

occur in the area during the Holocene (Brown, 2007; Sexton and Norris, 2011). In contrast, 

abundant and well preserved menardellids were found during the Pliocene time slice in the 

tropical North Atlantic. Morphological variability of ODP Sites 502, 659, 661, 667 and 925  
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ODP Sites Location Water 
Depth 

Number of  
specimen 

Coordinates Age (Reference) 
 

502A Colombia Basin 3061,5 594 11°29.46 N ; 79°22.74 
W 

3.2 Ma (Keigwin et al, 1982; 
Knappertsbusch, 2007) 

503A Guatemala Basin 3672 55 4°04,04'N; 95°38,21'W 3.2 Ma (Neptune database; Berggren., 1995; 
Knappertsbusch, 2007) 

532A Valvis Ridge 1131 Barren in 
menardellids 

19°44,61'S; 10°31,13'E 3.2 Ma (F, N; Neptune database; Berggren et 
al., (1995) 

659A Cape Verde Plateau 99.95 587 18°04.63 N ; 21°01.57 
W 

3.2 Ma (M, F, N, I; Neptune Database ; Leg 
108 Initial Report; Berggren et al., (1995) 

661A Sierra Leone Rise 45.77 673 09°26.81 N ; 19°23.16 
W 

3.2 Ma (M, F, N; Neptune Database ; Leg 108 
Initial Report; Berggren et al., (1995 ) 

667A Southern Margin of Sierra 
Leone Rise 

44.89 683 04°34.15 N ; 21°54.67 
W 

3.2 Ma (F, F, N; Neptune Database ; Leg 108 
Initial Report; Berggren et al., (1995) 

707A Mascarene Plateau 1552 613 07°32,72'S ; 59°01,01'E 3.2 Ma (F, N, R, D; Neptune database; 
Berggren et al., (1995) 

716B Maldives Ridge 544 526 04°56,0'N ; 73°17,0'E 3.2 Ma (F, N, I; Neptune database; Berggren 
et al., (1995) 

721B Owen Ridge 1944 40 16°40,636'N ; 
59°51,879'E 

3.2 Ma (M, F, N, R;  Neptune database; 
Berggren et al., (1995) 

728A Oman Margin 1428 Barren in 
menardellids 

17°40,790'N ; 
57°49,553'E 

3.2 Ma (M, F, N, R, I; Neptune database; 
Berggren et al., (1995) 

757B Ninetyeast Ridge 1652 487 17°01,458'S ; 
88°10,899'E 

3.2 Ma (Leg 121 Initial Report ; F, N; 
Neptune database; Berggren et al., (1995). 

758A Ninetyeast Ridge 2923 199 5°23,049'N ; 
90°21,673'E 

3.2 Ma (Leg 121 Initial Report ; M, N, D; 
Neptune database; Berggren et al., (1995). 

763A Exmouth Plateau 1368 486 20°35,20' S ; 112°12,50' 
E 

3.2 Ma (Leg 122 Initial Report ; M, F, N; 
Neptune database; Berggren et al., (1995). 

806B Ontong Java Plateau 2519 82 0°19,11' N ; 159°21,69' 
E 

3.2 Ma (Leg 130 Initial Report; Chaisson et 
Leckie (1993) ; F, N, R, D; Neptune database; 

Berggren et al., (1995). 807A Ontong Java Plateau 2803 255 3°36,42' N ; 156°37,49' 
E 

3.2 Ma (F, N, R, D; Neptune database; 
Berggren et al., (1995) 

823B Queensland Trough 1638 529 16°36,981' S ; 
146°47,037' E 

3.2 Ma (Leg 133 Initial Report ; F, N; 
Neptune database; Berggren et al., (1995). 

834A Lau Basin 2692 Barren in 
menardellid 

18°34,058' S ; 
177°51,735' W 

3.2 Ma (M, F, N; Neptune database; Berggren 
et al., (1995) 

835B Lau Basin 2905 Barren in 
menardellid 

18°30,061' S ; 
177°18,162' W 

3.2 Ma (M, F, N;  Neptune database; 
Berggren et al., (1995) 

846B Carnegie Ridge 3296 39 3°5,696' S ; 90°49,078' 
W 

3.2 Ma (F, N, R, D; Neptune database; 
Berggren et al., (1995) 

852B West of the East Pacific Rise 3861 Barren in 
menardellid 

5°17,566' N ; 110°4,579' 
W 

3.2 Ma (M, F, N, R, D, S;  Neptune database; 
Berggren et al., (1995) 

925B Ceara Rise 95.16 597 04°12.24' N ; 43°29.34 
W 

3.2 Ma (Chaisson and Pearson, 1997; 
Bickert et al., 1997) 

999A Kogi Rise, Colombian Basin 2828 368 12°44,639' N ; 78°44,36' 
W 

3.2 Ma (M, F, N; Neptune database; Berggren 
et al., (1995) 

1006A Great Bahama Bank 657 469 24°23,989' N ; 
79°27,541' W 

3.2 Ma (F, N; Neptune database; Berggren et 
al., (1995) 

1082A Northern Cap Basin 1290 Barren in 
menardellid 

21°5,6373' S ; 
11°49,2361' E 

3.2 Ma (M, F, N, R, D; Neptune database; 
Berggren et al., (1995) 

1143A South China Sea  2772 462 9° 21,72' N ; 113° 17,11' 
E 

3.2 Ma (M, F, N; Neptune database; Berggren 
et al., (1995; stable isotope model from 

Cheng et al. 2004) 1148A Continental slope of South 

China Sea 
3295 Barren in 

menardellid 
18°50,17' N 116°33,94' 

E 
3.2 Ma (M, F, N;  Neptune database; 

Berggren et al., (1995; Su et al. 2004) 
1236A Nazca Ridge 1323 Barren in 

menardellid 
21°21,539' S ; 
81°26,165' E 

3.2 Ma (M, F, N; Neptune database; Berggren 
et al., (1995) 

1238A Carnegie Ridge 2203 Barren in 
menardellid 

1°52,310' S ; 82°46,934' 
E 

3.2 Ma (F, N, D; Neptune database; Berggren 
et al., (1995) 

1241A Cocos Ridge 2027 Barren in 
menardellid 

5° 50,570'N ;8 6° 26,676 
W 

3.2 Ma (M, F, N, D; Neptune database; 
Berggren et al., (1995) 
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Table 4.1 (on previous page) : Summary information about investigated ODP samples. Abbreviations to 

stratigraphic control points used in Neptune age models: M=Magnetic datums, F=planktonic foraminiferal 

datums, N= calcareous nannoplankton datums, R=radiolarian datums, D= diatom datums, I=oxygen 

isotope datums, S= silicoflagellate datums. All datums were magnetically converted to the Candy and Kent 

(1995) magnetic polarity time scale (see Berggren et al., 1995). Most numeric age models are available from 

http://micropal-basel.unibas.ch/NEPTUNE/Start.html 

 

has previously been studied by Mary and Knappertsbusch (in press). The two locations ODP 

Site 999 and ODP Site 1006 were included to complete the Atlantic biogeographic coverage.  

In the Indian Ocean, seven locations were investigated from the 3.2 million years old 

tropical time-slice, e.g., from west to east ODP Sites 728, 707, 721, 716, 757, 758, and 763. Of 

these, Site 728 off the Oman Margin was found to be entirely barren in menardellids and could 

not be used for our analysis. Concentration of specimens in the adjacent ODP Site 721 was 

also relatively low. The majority of the remaining sites were devoid in menardellid in the size 

fractions >500µm.  

In the Pacific Ocean, a sample set with a sufficient quality for our analysis was difficult 

to obtain at 3.2 Ma. Most ODP sites in this ocean are located in the vicinity to the neighboring 

continents or of mid-Pacific sites, where either the low frequency of carbonate microfossils or 

poor preservation prevented us from collecting a wide biogeographic area. A total of 13 sites 

were initially thought to be promising, though, including ODP Sites 1148, 1143, 807, 806, 

823, 835 and 834 in the western Pacific, and Sites 1241, 852, 503, 848, 1238 and 1236 on the 

eastern tropical- to subtropical Pacific. However, only 6 samples remained left after further 

inspection for our studies after having checked them for content and preservation of 

menardellids (Figure 4.2). The available Pacific menardellid sample set leaves us therefore 

with a bimodal coverage: a western Pacific area (including ODP Sites 806, 807, 823 and 1143) 

showing well preserved and abundant menardellid faunas and an eastern Pacific area, where 

only the two Sites 503 and 846 contained sufficient amounts of menardiform globorotalids. 

The remaining localities (ODP Sites 852, 1241, 1238 and 1236) were depleted in these species 

(Figure 4.2). 
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Figure 4.2: Map illustrating the location of ODP Sites from where samples were investigated at 3.2 Ma 

during this study. Filled circles indicate where menardellid globorotalids were present in the sample. Open 

circles indicate samples that were checked for menardiform globorotalids but found to be barren and 

therefore excluded from this study. 

 

4.4 Methods 

4.4.1 Laboratory processing 

Bulk samples were washed and wet sieved over a 63µm mesh size. The material was 

then dried at 40°C and weighted. The fraction <63μm was preserved separately but excluded 

from our studies. For the size fraction >63µm seven sieve sizes were used, i.e., : >600µm; 

600µm-500µm; 500µm-400µm; 400µm-300µm; 300µm-200µm; 200µm-100µm; and 

<100µm. The size fraction <100µm was not used during the morphometric studies. In each 

size class menardellids were counted without species determination. When necessary, size 

fractions were down-splitted to manageable aliquots using a binary micro-splitter. If possible, 

120 specimens per size class were randomly selected. Under the binocular microscope the 

number of chambers in the final whorl, the wall aspect, the coiling ratio and the chamber 

deformations were noted. If less than 120 menardellid specimens were present in the sub-split, 
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all menardellids were picked. In the ideal case, this protocol produced a total of 720 specimens 

per sample for morphometric and statistical analyses. Such number of specimen was selected 

in order to obtain a statistically relevant estimation of morphological variability in each size 

fraction following the recommendation of Fatela and Taborda (2002).    

In order to compensate for a possible artificial size frequency shift due to the selection 

of 120 specimens per size class, menardellid were counted per size fraction. This allowed to 

estimate the absolute abundance of individuals per size fraction. Size class weighed 

frequencies were then calculated using the following formula: 

Fc = Ns / Np 

Fc is the correction factor attributed to specimens that belong to size class S, Ns is the 

absolute number of menardiform specimens within size class S, and Np represents the number 

of actually picked specimens in the size fraction S. All these methods are detailed in Mary and 

Knappertsbusch (in press).   

 

4.4.2 Digital image processing and geometric morphometry 

Isolated specimens were oriented and imaged in perfect keel position using a device 

called AMOR, which allows specimens to be automatically oriented in keel view 

(Knappertsbusch et al., 2009). AMOR consists of a motorized Leica MZ6 binocular 

microscope equipped with a customized motor zoom allowing for continuous magnifications 

and a tilting motorized stage. It automatically positions, orients, focuses, zooms, and images 

isolated microfossils mounted in standard multi-cellular micropalaeontological slides. Optimal 

orientation is reached, when the aperture appears in the middle of the test, the apex is located 

on the left side outline, and the keel is in the middle of the test. 

Basically, this investigation follows a traditional morphometric approach using 

morphometric measurements sensu Blackith and Reyment (1971); Marcus (1990); Reyment 

(1991), and Mitteroecker and Huttegger (2009), where measurements are derived from 

Cartesian outline coordinates. Images were processed following the procedures described in 

Mary and Knappertsbusch (in press). Primary measurements, which could be extracted in this 
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way from shell outlines, include the keel view global area (GA), the spiral height (δX), and the 

maximum axial diameter (δY) (indicated on Figure 4.3). All samples, prepared slides, digital 

images and numeric data are deposited alongside the collections of the West-European 

Micropaleontological Reference Center of the DSDP, ODP and IODP, Natural History 

Museum Basel, Switzerland. 

 

4.4.3 Theoretical ground for population-based taxonomy 

In theory, the basic assumption in the present study is that the menardellid assemblage 

in a bulk sample consists of the superposition of unimodal size frequency distributions (SFD), 

each one representing a different specific population. In this context it was attempted to isolate 

discrete clusters from continuous distributions in order to recognize ancient populations. This 

way the morphological observations fit within a more biological context. Once such clusters 

were found, morphological criteria can be derived for practical differential diagnoses. Finally, 

morphotypes can be extracted; a morphotype is considered as a group of individuals sharing a 

common morphology within a given population. 

According to Peeters et al., (1999) a living plankton population follows a distribution 

that is similar to the sum of a Gaussian distribution regarding size, representing the adult and 

pre-adult specimens, and an exponential component in the juvenile portion. In sediments, the 

juvenile exponential mode tends to be reduced in comparison with the one in the plankton, 

because of increasing loss of juveniles with increasing water depth due to fast growth, 

predation or dissolution. Most of the settling juvenile exponential distribution were moreover 

observed in the size fraction <125µm (Peeters et al., 1999). Because in the present 

investigation from ancient sediments the size fractions >100µm were studied, this means that 

the exponential (juvenile) size spectrum is neglected.  

Therefore, and following the model Peeters et al. (1999), it is thus reasonable to 

assume that a specific planktonic foraminiferal population, which is preserved in the 

sedimentary record, largely appears in form of a normal (Gaussian) distribution. This is the 

basic tenet that is followed throughout the present investigation. In the case of several 

coexisting species (including sibling species) the consequence is that the preserved 
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distribution becomes a multimodal composite of Gaussians. Therefore, fossil menardellids 

collected from a volume of sediment should be separable into their original, distinct 

populations when decomposed by multimodal Gaussian best-fitting.  

 

4.4.4 Practical approach: population extraction and morphotype 

identification 

In practice, the analytical approach to find populations in the sediments relies on 

several steps. First, populations were filtered out from a mixture comprising different 

menardellid species (Figure 4.3, step 1). These populations were found by Gaussian best fit 

techniques (Figure 4.3, step 2), and can therefore be described by a set of parameters 

characterizing the Gaussian distribution, i.e. the modal size, the area under the curve, and 

especially the position of the Gaussian distribution in the size axis (represented by 2 standard 

deviations)  (Figure 4.3, step 3). In parallel, the total intra-sample morphological variability is 

investigated. Frequency distributions of morphological measurements, together with other 

observations (number of chambers in the last whorl, wall microstructure and chamber flexure) 

are plotted in function of shell size per locality (Figure 4.3, step 4). We used the ratio of δY 

(axial diameter) /δX (Spiral height) to summarize the morphology of menardellid shell shape 

in keel view (Knappertsbusch 2007). The morphological data are then gridded and represented 

in a contour frequency diagram (Figure 4.3, step 5).    

Corresponding populations from the different samples were combined to 

morphological diagrams to define morphotypes (Figure 4.3, step 6). Morphospace limits of 

these morphotypes were found using 2 standard deviations from the distribution mean on the 

size versus ratios of δX/δY diagram. These contoured frequencies were then used to delimit 

morphotype boundaries as Boolean disjunction of local morphotype fields. In a final step, 

these morphotype boundaries are compared to each other from region to region and from 

ocean to ocean to search for biogeographic provinces or trends (Figure 4.3, step 7). 
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Figure 4.3 (on previous page): Linear measurements and explanation of procedures carried out. (Step 1) 

Total size frequency diagram (SFD) for all menardiform globorotalids per sample, after frequency 

correction for the division in size class (cf part 4.3.1). (Step 2) Decomposition of total sample split SFD into 

populations using Gaussian Fitting. (Step 3) Extraction of Gaussian parameters. A1 and A2 represent the 

area under the curve. C1 and C2 indicate mode positions along the axis of the keel-view area, σ1 and σ2 

denote the corresponding standard deviations, and Wc1 and Wc2 represent two standard deviations.  (Step 

4) Scatter plot of size versus δY/δX per classes of final chamber numbers. (Step 5) Contoured scatter 

diagram of size versus δY/δX. The upper and lower limits of each Gaussians mode (as recognized by basal 

contour lines) are projected to the δY/δX axis. (Step 6) Finding morphotype field limits for differential 

diagnosis: For each sample the widths of ± 2σ from the mode position are applied to delimit a particular 

field in horizontal direction. Similarly, the total extension of the δY/δX ratio for the respective contour 

mode was used to find its limit in vertical direction. (Step 7) The respective fields from each individual 

sample were superposed on top of each other and their outermost boundaries were defined as the resulting 

morphotype field. 

 

The method was developed and described in Mary and Knappertsbusch (in press) and 

is, in this manner, applied to investigate the full global variability of menardiform 

globorotalids. It could eventually be further applied to other groups as well. It does not suffer 

from taxonomical pre-conceptions, which may vary between specialists. The cost of this 

method is that it requires a large number of specimens in order to be statistically reliable. A 

further complication occurs if populations are present at low frequencies and then become 

masked by the dominant forms. Under-represented populations are often difficult to identify 

using the Gaussian fitting method. 

 

4.5 Results 

In this section, menardellid populations are first identified and described from ocean to 

ocean. Subsequently, and based on these findings, population specific size frequency 

distributions for all samples will be divided and proposed as distinctive morphotypes. 
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4.5.1 Menardellid populations 

Menardellid globorotalids display a wide range of shell size, spanning between 0.09 

and 0.49 mm² keel view area values. During the Pliocene, they are abundant in the smallest 

size range (between 100 and 300 µm sieve size), whereas a limited number of specimens occur 

in the largest size fraction (>500µm), associated with other taxa like Orbulina universa, and 

Globorotalia tumida. Results from the Mid-Pliocene time-slice suggest that the majority of 

menardellids are divided into three cosmopolitan populations, to which the informal names 

population A, B and C were assigned (Mary and Knappertsbusch, in press). Eventually, 

endemic populations occur as well, denominated population D and E. Population A comprises 

the smallest specimens. Their peek for keel view area is centered on 0.05 mm². The peak of 

the intermediate Population B is located around 0.1 mm2.  Population C is mostly distributed 

in the larger size range, between 0.1 and 0.2mm². The position of the menardellid SFD in the 

size spectrum is relatively stable between the oceans. In contrast, biogeographic differences 

exist in the relative contribution of populations A, B and C. 

4.5.1.1 Atlantic Ocean size frequency distribution 

In the Atlantic Ocean the menardellid SFD is characterized by typical and 

representative large specimens, which belong to Population C. They are relatively abundant 

and well developed in each investigated locality in comparison to the two other oceans (Figure 

4.4A). The small population A is the dominant one in all studied sites, except at ODP Site 661, 

where population B is more abundant. The relative distributions of populations B and C 

decrease from east to west in counter-direction of the North Atlantic gyre (Figure 4.4A). 

Eastern Atlantic locations (Sites 659, 661 and 667) contain more of the larger specimens of 

population B and C than the western ones. 
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Figure 4.4 (on previous page): Overview of relative abundances, size frequency distributions and 

morphological variability in the tropical Atlantic Ocean. (A) Map illustrating the relative abundances of 

populations A, B, C, D. Values are calculated after frequency correction (cf part 3.1). (B) Size-frequency 

distributions for populations A, B, C and D which were isolated using the Gaussian Fitting method. (C) 

Diagrams illustrating the differential diagnosis fields for morphotypes MA, MB, SH1, SH2, MC1, MC2 

and MC3. Morphotype boundaries are obtained by superposition and combination of the fields drawn 

from the individual samples (given in appendix 2, see also Figure 3, Step7). Shaded rectangles represent 

morphological boundaries per sample. The contour lines enclose 100% of menardellid specimens observed 

in the tropical Atlantic Ocean. 

 

The frequency modes of population A tend to increase when moving southward: The 

sample from Site 667, for example, contains distinctly larger specimens of population A than 

the one from Site 1006 (Figure 4.4B1).  Population B remains relatively constant over the 

entire Atlantic dataset (Figure 4.4B2) except at Caribbean Site 999, where it is absent. The 

SFD of Population C is more variable with biogeography (Figure 4.4B3). Site 661 shows, in 

comparison to the other locations, a larger modal size, and a higher contribution of population 

C to the menardellid assemblage.  In contrast, Sites 502, 659 and 667 are characterized by a 

smaller mode.  

In the Atlantic Ocean, a fourth population D occurs and is concentrated in the western 

part of the Atlantic (Figure 4.4B2). Specimens that belong to population D display a finely 

perforated wall. They are recorded in relatively high abundance at Sites 1006, 999 and 925 but 

are rare at Site 667. At this locality, the small number of recorded specimens prevented a 

reasonable interpretation of shiny menardellid SFDs. The SFD of population D overlaps with 

population B. At Site 999, population B is absent. The SFD at this locality is only composed 

of populations A, C and D, which may point to special environmental conditions. The SFDs of 

population D show only little variation along the West Atlantic area (Figure 4.4A). This 

population is illustrated in more detail at Site 999 in Figure 4.7A.  



Chapter 4: Worldwide morphological variability 

 106 

 



Chapter 4: Worldwide morphological variability 

 107 

Figure 4.5 (on previous page): Overview of relative abundances, size frequency distributions and 

morphological variability in the tropical Indian Ocean. (A) Map illustrating the relative abundances of 

Populations A, B and C. Values are calculated after frequency correction (cf part 3.1). (B) Size-frequency 

distributions for populations A, B and C which were isolated using the Gaussian Fitting method. (C) 

Diagrams illustrating the differential diagnosis fields for morphotypes MA, MB, MC1 and MC2. 

Morphotype boundaries are obtained by superposition and combination of the fields drawn from the 

individual samples (given in appendix, see also caption to Figure 3). Shaded rectangles represent 

morphological boundaries per locality. The contour lines enclose 100% of menardellid specimens observed 

in the tropical Indian Ocean. 

 

4.5.1.2 Indian Ocean size frequency distribution 

Population D is absent from Indian localities. In the Indian Ocean the population A 

strongly dominates the menardellid assemblage (Figure 4.5A). The dominance of population 

A at Oman Margin Site 721 is most probably due to the overall low abundance of 

menardellids in that sample (the entire sample revealed only 41 specimens). The modal size of 

population A is shifted to slightly larger values in comparison to the Atlantic (Figure 4.5B1), 

while smaller modal sizes occur at Sites 763, 721 and 757.  

Indian Ocean menardellid faunas are also typically represented by population B, which 

makes up between 23% at Site 721 and 48% at Site 763 (Figure 4.5A). SFDs of these Indian 

Ocean populations are fairly similar to those in the Atlantic Ocean, with the exception of Sites 

757 and 763, where the modal sizes are smaller (Figure 4.5B2). In these locations, the SFD of 

population B strongly overlaps with the one of population A. 

Population C occurs only in low abundance in the Indian Ocean (Figure 4.5A), with the 

exception of Sites 707 and 757, where abundance is similar to the Atlantic Ocean (between 10 

and 15%). The size range of population C is distinctly narrower than in the other oceans 

(maximum of 0.20 mm² in the Indian versus commonly 0.30mm² to a maximum of 0.41mm² 

in the Atlantic), which is explained by fewer large multi-chambered menardellid faunas in the 

Indian Ocean during the Mid-Pliocene (Figure 4.5B3). The presence of population C at Sites 

758 and 763 is manifested in only few representatives (<10 specimens), which did not allow to 

recognize this population by our Gaussian fitting method. 
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4.5.1.3 Pacific Ocean size frequency distribution  

In comparison to the Atlantic and Indian Oceans, Pacific menardellids are rarely preserved. 

Only few samples from the 3.2 million years old time-slice were at disposal in the Pacific: 

from the entire Central Pacific no suitable material could be recovered from that time-slice. 

Again, the population A makes up more than 50% of the menardellid populations in 

both, the western and eastern margins of the Pacific Ocean (Figure 4.6A). Site 846 is 

particularly intersting, because only specimens of population A were observed. Population B 

occurs at Sites 823 and 1143 in the western Pacific Warm Pool area, but also at Site 503 on the 

eastern side (Figure 4.6A), though with only few specimens in the latter case.   

The size frequency distributions of population A and B are similar to those of the other 

Oceans (Figure 4.6B1 and B2).  Population C is only rarely encountered in the two western 

Pacific Warm Pool sites (1143 and 823) and no more than 4 specimens with 7 to 8 chambers 

were observed at Site 807. Moreover, population C is limited to smaller-sized forms in 

comparison to Atlantic and Indian relatives (Figure 4.6B3). 

Population E is also restricted to the western Pacific (e.g., Sites 806, 807, and 1143, 

Figure 4.6A), and comprises the largest individuals of the Pacific sample set. They extend 

over a wide size range up to a keel view area of 0.4 mm2, which is different to the well defined 

and narrower size ranges observed for populations A, B and C. The SFD of this population is 

shown in detail at Site 807 in Figure 4.9A. 

 

 

Figure 4.6 (on the following page): Overview of relative abundances, size frequency distributions and 

morphological variability in the tropical Pacific Ocean. (A) Map illustrating the relative abundances of 

Populations A, B, C and E. Values are calculated after frequency correction (cf part 3.1). (B) Size-

frequency distributions for populations A, B, C and E which were isolated using the Gaussian Fitting 

method. (C) Diagrams illustrating the differential diagnosis fields for morphotypes MA, MB, MC2 and 

ME. Morphotype boundaries are obtained by superposition and combination of the fields drawn from the 

individual samples (given in appendix, see also caption to Figure 3). Shaded rectangles represent 

morphological boundaries per locality. The contour lines enclose 100% of menardellid specimens observed 

in the tropical Pacific Ocean. 
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4.5.2 Menardellid morphotypes 

The SFDs of every population were used in combination to morphological analysis to 

define menardellid morphotype boundaries per Ocean, following the protocol described in 

section 4.4. Table 4.2 indicates the populations used for every corresponding morphotype. 

Morphospace limits of each morphotype are based upon the extremes of all 2σ values for the 

keel-width area in horizontal direction, and upon the extremes of all δX/δY ratios for the 

respective populations. Diagrams showing detailed differential diagnosis per locality are given 

in Appendix 2.  

To the two cosmopolitan populations A and B are associated two morphotypes, 

informally called MA and MB respectively. They are separated from each other by the shape 

of their test, represented by the ratio of δY/δX, and by their number of chambers in the final 

whorl. Morphotype MA is characterized by specimens holding 5 to 6 chambers in the last 

whorl. The larger Morphotype MB comprises specimens with 6 to 8 chambers in the final 

whorl.  

The third population C shows, in general, a higher morphological variability. Most of 

the population C specimens fall into two different morphotypes, designated as MC1 and MC2, 

both with more than 7 chambers in the final whorl. These two morphotypes are separated on 

the basis of their ratio of δY/δX: morphotype MC1 shows ratios larger than 2.5, and 

morphotype MC2 have ratios less than 2.5, while their morphologies show increasing overlap 

with decreasing overall test size. The complete descriptions of these morphotypes are given in 

detail in Mary and Knappertsbusch (2013). 

The morphological variability of the encountered morphotypes per ocean is described 

below in more detail. 

4.5.2.1 Atlantic Ocean morphotypes 

 Seven different menardellid morphotypes are defined in the tropical Atlantic Ocean at 

the time-slice 3.2 Ma: these are the four cosmopolitan morphotypes MA, MB, MC1, MC2, 

and three Atlantic endemic morphotypes MC3, Sh1 and Sh2 (Table 4.2).  Morphotypes MA 

and MB show overlap but can be distinguished from each other by the centers of their modes. 
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The field of morphotype MA is delimited between δY/δX ratios of 1.15 and 3.2 (Figure 

4.4C1). These ratios increase rapidly with size. The morphotype MB shows comparable 

morphological boundaries, spanning between 1.5 and 3.2 (Figure 4.4C2).  

 

Table 4.2: Overview of populations, associated morphotypes, and similarity to literally established species, 

arranged by ocean. 

Atlantic Ocean 
 

Indian Ocean 
 

Pacific Ocean 
 

 
Taxonomic 

Interpretation 
 

Population  Morphotype Population  Morphotype Population  Morphotype 

Population A MA Population A MA Population A MA 
 

G. (M.) menardii 1-
"menardii A" 2 

 

Population B MB Population B MB Population B MB 
 

G. (M.) limbata1 

 
Population C MC1 Population C MC1 Population C - G. (M.) 

multicamerata1 
 MC2  MC2  MC2 G. (M.) 

multicamerata1 
 MC3  -  - 

 
G. (M.) 

multicamerata1  
 

Population D SH1  -  - G. (M) exilis1  

 SH2  -  - 
 

G. (M.) pertenuis1  
 

 -  - Population E ME G. (M.) menardii 1- 
Morphotype α 3 

 1 from Mary and Knappertsbusch, (in press)    2 from Bolli and Saunders, (1985)  3 from Knapperstbusch (2007)   

 

 Population C, in contrast, covers a wider morphological range (Figure 4.4C3). The 

morphotype MC2, characterized by a thick shell, inflated in profile view, with 8 to 12 

chambers in the final whorl, is the most common in the Atlantic. Population C in western 

Atlantic Sites 502, 925, 999 and 1006 are composed exclusively of morphotype MC2. In the 

East Atlantic Sites 659 and 667 population C morphotypes have shells with elongated 

chambers and thin shell morphologies (δY/δX above > 2.5) corresponding to morphotype 

MC1. Morphotypes MC1 and MC2 co-exist with MC1 being the dominant form. A third 

morphotype MC3 occurs at Site 661 (Figure 4.4C3), spanning in the lowest part of the Size 

versus δY/δX diagram, which is typical for Atlantic samples. Morphotype MC3 is also charac-

terized by a distinct flexure of the last chamber and a low δY/δX ratio value of less than 2.  
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Figure 4.7: SFD and morphological variability at Site 999 (Caribbean Sea). (A) SFD with superposing 

Gaussian best fitting curves corresponding to populations A, C and D. Population B is absent from this 

sample. (B) Same sample but showing size frequency distributions separated by number of chambers in 

the final whorl. (C) Scatter plot of keel view area versus the δY/δX ratio separated by number of chambers 

in the final whorl. For better visibility, shiny specimens are not plotted in function of their number of 

chambers. The contour lines enclose 100% of menardellid specimens observed at Site 999.  (D) 

Morphotype fields at Site 999 for morphotypes MA, SH1 and MC2.  The Grid cell-size for contouring is 

0.01 mm in horizontal direction and  0.05 in vertical direction. The Int number represents the number of 

specimens per contour interval.  
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 The densely perforated menardellids, belonging to population D, are classified into two 

separate morphotypes called SH1 and SH2. The morphotype SH1 overlaps in shell 

morphology with morphotype MB (Figure 4.4C2). It has between 5 and 8 chambers in the last 

whorl (indicated on Figure 4.7B). The larger specimens of morphotype MA and the smaller 

morphotype SH1 occupy also the same morphospace, although the latter tends to be larger in 

size. In Figure 4.7 a complete diagnostic sequence from the SFD to morphotype classification 

is illustrated for Site 999 because morphotype SH1 occurs here at very high abundances. The 

population B - and so its morphotype MB – was not observed in this sample and so did not 

mask other morphotype fields. This special occasion allowed an accurate definition of the field 

limits of Morphotype SH1 (Figure 4.7D). This morphotype occurs at higher values of the 

δY/δX ratio than morphotype MA (Figure 4.7C and 4.7D). In conclusion, the addition of sites 

999 and 1006 has provided key insights to study in detail the morphological variability of 

morphotypes SH1 . 

 The "shiny" morphotype SH2 is characterized by larger size, and by a strongly axially 

compressed, thin and elongated profile, which is similar to the non-shiny morphotype MC1 

(Figure 4.4C3). Morphotype SH2 has a particularly steep slope of the δY/δX ratio versus size. 

In the 3.2 Ma time slice samples, this morphotype is restricted to the Equatorial Atlantic Site 

667 and occurs there in only low abundances.  

4.5.2.2 Indian Ocean morphotypes 

In the Indian Ocean the morphological diversity in the 3.2 Ma time-slice remains 

comparably poor and only 4 morphotypes were found. They consist of the morphotypes MA, 

MB, MC1, MC2 (Table 4.2),  also encountered in the Atlantic Ocean. The shiny morphotypes 

SH1 and SH2, typical for the Atlantic Ocean, do not occur in the Indian Ocean. As in the 

Atlantic Ocean, the Indian Ocean sedimentary populations A and B were assigned to 

morphotypes MA and MB, respectively. In the δY/δX ratio versus size diagrams these 

morphotypes occupy the same morphospace as their Atlantic relatives. Their morphological 

boundaries are relatively stable worldwide (Figure 4.6C1 and 4.6C2).  
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Figure 4.8: SFD and morphological variability at Site 716 (Indian Ocean). (A) SFD with superposed 

Gaussian best fitting curves corresponding to populations A, B and C. (B) Same sample but showing size 

frequency distributions separated by number of chambers in the final whorl. (C) Scatter plot of keel view 

area versus the δY/δX ratio separated by number of chambers in the final whorl. The contour lines enclose 

100% of menardellid specimens observed in at site 716.  (D) Morphotype fields at Site 716 for morphotypes 

MA, MB and SH1. The Grid cell-size for contouring is 0.01 mm in horizontal direction and  0.05 in vertical 

direction. The Int number represents the number of specimens per contour interval.  
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The Indian Ocean population C consists mainly of morphotype MC1 (Figure 4.5C3). It 

is characterized by the elongated, thin shell morphology, similar to the eastern Atlantic Sites 

667 and 659 (Figure 4.4C).  At Sites 716, 758 and 763 only representatives of morphotype 

MC1 were detected.  Morphotype MC2 was only found at the Indian Ocean Sites 757 and 707. 

The Indian MC2 forms are smaller, and with a more delicate morphology than their Atlantic 

counterparts (compare Figure 4.4C3 with 4.5C3). 

Figure 4.8 summarizes the diagnostic features for morphotypes MA, MB and MC1 at 

Site 716 in the northern Indian Ocean, where the absence of other morphotypes facilitated the 

definition of morphospace areas. Individuals with more than seven chambers in the final whorl 

occur in low abundance at this Site, which is typical of Indian localities (Figure 4.8B).  

4.5.2.3 Pacific Ocean morphotypes 

In the Pacific Ocean the 4 morphotypes MA, MB, MC2 and ME were observed (Table 

4.2). The morphotype ME was found to be endemic to the Pacific Ocean at 3.2 Ma. The 

remaining morphotypes (MC1, MC3, SH1 and SH2) are all absent from our Pacific samples. 

A particular difficulty in our Pacific sample set was the limited number of specimens available 

in the larger size fraction, which made recognition of Pacific morphotypes more difficult. Also 

in the Pacific Ocean the boundaries for morphotype MA are similar to those from the Atlantic 

and Indian Oceans, with δY/δX ratios ranging from 1.5 to 3.2. The sizes of the Pacific 

morphotype MA are slightly larger than in the remaining oceans (Figure 4.6C1). The same 

holds true for morphotype MB, with the exception of Eastern Equatorial Pacific Site 503, 

where the morphological boundaries are narrowed due to the limited number of specimens 

available at this locality (Figure 4.6C2). 
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Figure 4.9: SFD and morphological variability at Site 807 (western Pacific Ocean). (A) SFD superposed by 

Gaussian best fitting curves corresponding to populations A and E. (B) Same sample but showing size 

frequency distributions separated by number of chambers in the final whorl. (C) Scatter plot of keel view 

area versus the δY/δX ratio separated by number of chambers in the final whorl. The contour lines enclose 

100% of menardellid specimens observed at site 807. (D) Morphotype fields at Site 807 for morphotypes 

MA an ME. The Grid cell-size for contouring is 0.01 mm in horizontal direction and  0.05 in vertical 

direction. The Int number represents the number of specimens per contour interval.  
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In case of morphotype MC2 the δY/δX ratio is narrower than for Atlantic Ocean 

specimens, but similar to Indian Ocean morphotype MC2 (compare figure 4.5C3 with 4.6C3). 

The endemic morphotype ME occurs mostly in the western Pacific Sites 806, 807 and at lower 

proportions also at the South China Sea Site 1143 (Figure 4.6C3). In the δY/δX versus size 

diagrams there is some overlap of morphotype ME with those of the Atlantic morphotype 

MC3, but morphotype ME shows always a very low ratio of δY/δX <2 (Figure 4.6C3). The 

morphotype ME, however, shows a smaller test size, and is characterized by a more inflated 

umbilical size and a distinct lower number of chambers in the last whorl (5 to 6 versus 8 to 12) 

(Figure 4.9B).  The number of chambers per whorl of morphotype ME is comparable to the 

number observed in morphotype MA. The morphological variability at site 807, where the 

morphotype ME is dominating menardellid, shows a clear bimodality between morphotype 

MA and morphotype ME (Figure 4.9A). The constant number of chambers of menardellid 

specimens (5 to 6), which is typical for the samples from Sites 806 and 807, can be observed 

in Figure 8B. The morphotypes MB and MCs are absent. 

 

4.6 Discussion 

The application of Gaussian best fitting to size frequency distributions in global 

tropical to subtropical deposits from 3.2 million years leads to the establishment of 5 different 

menardiform populations in the sediment: populations A, B and C, which are cosmopolitan, 

and populations D and E, which are limited to the tropical Atlantic and the Pacific Ocean, 

respectively. These populations are identifiable by their modal positions of Gaussian 

frequency distributions. It was found that modal positions remain surprisingly stable from one 

locality to the next and even more surprisingly show little inter-oceanic variation. This modal 

stability is generally contrasted by the size range of the distributions and the number of 

chamber in the last whorl, which are more susceptible to show biogeographic trends. 

While menardellid populations are based on the Gaussian components of local intra-

oceanic sedimentary size frequency distributions, the proposed morphotypes herein are 

integrated recognizably units, which show the menardellid variability at an inter-oceanic level 

of variation. This more global approach resulted in a total of 8 morphotypes with the informal 
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names MA, MB, MC1, MC2, MC3, SH1, SH2 and ME. They show a high degree of overlap, 

which makes the classification of individual specimens often difficult. Because of strong 

similarity in smaller and pre-adult forms, visual classification into discrete morphotypes is 

practically limited to the more adult tail of the size spectrum, especially in the case of 

morphotypes MC1, MC2 and MC3 (Figure 4.11). 

 

4.6.1 Biogeographic distribution of menardellids at 3.2  Ma 

Mid-Pliocene morphotypes MA and MB where found to show a worldwide geographic 

distribution, while the occurrence of morphotypes MC1, MC2, SH1, SH2 and ME is indicative 

of 5 biogeographic provinces: these are 1.) a western Atlantic province, 2.) an eastern Atlantic 

province, 3.) a western Indian Ocean province, 4.) the Pacific Warm Pool area, and 5.) an 

eastern equatorial Pacific Ocean province. 

 The distribution of Mid-Pliocene menardellids in the Atlantic Ocean can be divided in 

two different areas: the western Atlantic province including ODP Sites 502, 925, 999 and 

1006.  This province is characterized by abundant morphotypes MA and MB in all studied 

locations. Site 999 shows also assemblages including frequent morphotypes MC2, and the 

typical finely perforated and delicate morphotype SH1. Site 502 is the only locality depleted in 

morphotype SH1 despite the proximity to Site 999, where finely perforated menardellids were 

abundant. The scattered occurrence of finely perforated menardellids was already noted by 

Chaisson (2003) for samples older than 3  Ma and prior to their rise to dominance in the 

Atlantic Ocean.  During the Mid-Pliocene, the distribution of morphotype SH1 is restricted to 

the western Atlantic province suggesting  that the surface hydrographic condition in this area 

favored the occurrence of finely perforated menardellids. In the Caribbean Sea the early 

formation of a Warm Pool between 4.7–4.6  Ma (Steph et al. 2010) has initiated the deepening 

of the thermocline in that region, in response of the global oceanic changes that occurred 

during the Pliocene (Groeneveld et al., 2008; Steph et al. 2010). The distribution of 

Morphotype SH1 may be driven by such conditions. In contrast, the East Atlantic province is 

mainly characterized by the larger menardellid morphotype MB, which dominates the other 

coexisting morphotype MCs. 
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Figure 4.10: Summary plot of modal positions versus widths of all populations found in this study in the 

three oceans. Modal positions are in units of keel view area (mm2). Population widths are in units of 2 

standard deviations of the respective Gaussian best fitting curves. Black symbols are from the Atlantic 

Ocean, grey ones from the Indian Ocean, and white ones from the Pacific Ocean. Dashed green lines 

enclose worldwide populations A, dashed purple lines enclose worldwide population D, dashed red lines 

enclose worldwide population B, dashed black lines enclose worldwide population D, and dashed blue lines 

enclose worldwide population E. 
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In the Indian Ocean province, the distribution of menardellids is relatively uniform, as 

can be seen in the respective 3.2 Ma time-slice samples from Sites 707, 716, 721, 757, 758, 

763. This Indian province shows a strong dominance of small morphotype MA, while large 

menardellids (morphotype MC1) remain generally scarce. Only at Site 707 and 757 the 

morphotype MC2 was observed in very low abundances.  

Similar to the Atlantic Ocean, the Pacific Ocean sample set is subdivided in two 

menardellid provinces as well: the Pacific Warm Pool province has less multi-chambered 

menardellids but is characterized by dominant morphotype MC2 (see Sites 823 and 1143). In 

the eastern part of the Warm Pool area (Sites 1143, 806 and 807) the Pacific endemic 

morphotype ME occurred while morphotype MC2 in the largest size fraction is rare.  The 

eastern Pacific province is represented, however, only by two samples, where menardellids 

occur at relatively low abundances and are dominated by morphotype MA. Given the 

relatively coarse sample density at the 3.2  Ma old time-slice at our disposal for this study, 

caution must be taken not to over-interpret these findings with the paleo-oceanographic or 

paleo-current patterns known from that time. In order to obtain a picture about biogeographic 

tendencies of Mid-Pliocene menardiform morphotypes at higher spatial resolution, further 

investigations are required. 

 

4.6.2 Contribution to menardellid classification 

One of the aims of the present work is to disentangle the intricate menardellid 

taxonomy with the help of quantitative morphometric analyses of populations. The present 

data provide key information for hypotheses about a hidden diversity within the otherwise 

established menardellid classification. Morphotypes MA, MB, MC1 through 3, SH1 and SH2 

have previously been tentatively attributed to the formal menardellid species (Mary and 

Knappertsbusch, in press). A summary of the interpretations of these morphotypes is given in 

Table 4.2. 
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Figure 4.11: Summary of morphotypes proposed in this study in the morphospace of δY/δX ratio versus 

keel view area (see also Table 2). Symbols represent centers of morphospace fields of respective 

morphotypes as found in each separate ocean. The error-bars represent the maximum width per 

morphospace in direction of keel view area (horizontally) and in direction of  δY/δX (vertically). Black 

symbols represent Atlantic locations, grey symbols Indian Ocean locations, and white symbols Pacific 

locations. 

4.6.2.1 The morpho-species concept of Globorotalia (Menardella) menardii 

Morphotype MA shows several morphological characteristics in common with 

Globorotalia (M.) menardii (Parker et al. 1865), to which it has been assigned (Mary and 

Knappertsbusch, in press). This morphotype was noted to match with the informal G. (M.) 
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menardii "A", which is a small, extinct variant of G. (M.) menardii ranging from the Late 

Miocene to the Early Pliocene (Bolli, 1970).  The visual comparison of shell morphology of 

Morphotype ME with menardellids illustrated in the literature (Kennett and Srinivasan, 1983; 

Bolli and Saunders, 1985) lets to conclude that this morphotype is a further variant of 

Globorotalia menardii as well. A very similar morphotype (α) was recorded by 

Knappertsbusch (2007) in the eastern Equatorial Pacific at Site 503 and in the Caribbean Sea 

Site 502. Both morphotypes, ME and α are virtually identical in shell morphology, number of 

chambers in the final whorl, and both populate the identical segment in the morphospace 

spanned by spiral height (δX) versus axial length (δY) (see Figure 4.12).  

Morphometric measurements of δX versus δY in the Pacific ODP Site 503 revealed an 

extended period from Late Miocene through Late Pliocene, during which G. (M.) menardii 

shows a continuous increase of shell size and evolving into shell morphologies representing 

extant morphotype α (Knappertsbusch, 2007; Brown, 2007). The main morphological 

expansion did, however, only occur from 2.5  Ma onwards at Site 503, and after 1.7  Ma on 

the Caribbean side of the Isthmus of Panama, at Site 502. Before this interval, specimens of 

morphotype α  from Knappertsbusch (2007) follow the same morphospace through time as the 

3.2 million years old morphotype MA presented herein. During the Mid Pliocene, the Site 503 

specimens belong to morphotype MA (Figure 4.12), with the exception of few specimens that 

coincide with morphotype MB. However, the occurrence of Mid-Pliocene morphotype ME in 

the western Pacific sample at Site 807 possibly points to an earlier size evolution of 

Morphotype α towards larger forms in that area than reported at Site 503 by Knappertsbusch 

(2007).  
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Figure 4.12: Comparison between morphotype MA and morphotype α sensu Knappertsbusch (2007). (A) 

Bivariate contour plot of δX versus δY measurements at Site 807 (which contains abundant specimens of 

morphotype MA and α) and at Site 503 (where only morphotype MA is present) (B) A comparison of the 

base contour line from Site 807 and site 503 during Mid Pliocene with the base contour line including 

specimens of morphotype alpha younger than 0.22 Ma from Site 503 (eastern Equatorial Pacific) as shown 

in Knappertsbusch (2007). The Grid cell-size for contouring is 10 m in horizontal direction and  20 m in 

vertical direction. 
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The presented new time-slice at 3.2  Ma however, indicates that morphotype MA and 

morphotype α do not belong to the same population (populations A and E respectively, see 

Figure 4.9). Although there is overlap, both populations differ strongly in modal size (see 

Figures 4.9 and 10), and their biogeographic distributions are different too (population A 

shows a worldwide spread during the Mid-Pliocene time-slice whereas population E is limited 

to the west Pacific). For these reasons we must refrain from the earlier interpretation of 

Knappertsbusch (2007),  i.e. that morphotype α includes the small "menardii A" from Bolli 

(1970). Instead, the new morphometric and biogeographic evidence from the 3.2 time-slice 

mapping experiment suggests that the small morphotype MA and the large morphotype ME 

may constitute distinct, albeit strongly homeomorphic or sibling species. 

4.6.2.2 Morphotypes of Globorotalia multicamerata 

Morphotypes MC1 and MC2 have been interpreted as morpho-variants of Globorotalia 

multicamerata Cushman and Jarvis (1930) (Mary and Knappertsbusch, in press). Morphotype 

MC1 shows a typically thin and elongated shell whereas morphotype MC2 displays a more 

robust shell. Other shell features let one to distinguish the two morphotypes by the number of 

chambers in the final whorl, which is less in morphotype MC1, and the average size.  

There are, however, no clear indications that the two morphotypes belong to different 

populations considering their SFDs: both morphotypes are derived from one population C. 

The variation of the SFDs of population C is high from sample to sample, i.e. from place to 

place (see Figure 4.10). In the western Atlantic the larger morphotype MC2 dominated at 3.2 

Ma, whereas in the Indian Ocean morphotype MC1 was the prevailing form at that time. 

These findings support the view of considerable ecophenotypic variability in Mid-Pliocene G. 

(M.) multicamerata. The larger morphotype MC2 occurred preferentially in the Caribbean Sea 

and the Pacific Warm Pool area indicating preference for extremely warm and highly stratified 

waters. The thinner and more elongated morphotype MC1, which corresponds to the forms 

illustrated in Bolli and Saunders (1985), are interpreted by as being transitional between G. 

(M.) multicamerata and G. (M.) pertenuis (cf. Figure 4.1A.).  
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The morphological investigations confirm the morphological similarity between 

morphotype SH2 (= G. (M.) pertenuis,  Mary and Knappertsbusch, in press) and morphotype 

MC1. The typical thin morphology of G. (M.) pertenuis has been interpreted as adaptation to 

surface water conditions, and is perhaps indicative for hosting symbionts (Chaisson 2003). 

The depth-habitat of G. (M.) multicamerata has been studied in detail by Pfuhl and Shackleton 

(2001). These authors mentioned a progressive rise of G. (M.) multicamerata to shallow water 

depths from the Late Miocene to Early Pliocene. Keeping this in mind, the thin morphology of 

morphotype MC1, which is similar to G. (M.) pertenuis, may be interpreted as an adaptation to 

a shallower habitat, in contrast with morphotype MC2, which probably lived deeper in the 

water column. To further confirm these morphological interpretations, extra tests need to be 

done in future, for example with the help of stable isotopes. 

 

4.7 Conclusions 

Applying the method of Gaussian best fitting to the menardellid SFDs, we identify 

eight different morphotypes MA, MB, MC1, MC2, MC3, SH1, SH2 and ME in global tropical 

to subtropical sediments from a 3.2 million years old time-slice. The majority of these 

morphotypes (MA, MB, MC1, and MC2) shows a worldwide geographic spread, albeit at 

different degrees of dominance in each ocean. A subset of the menardellids from the 3.2 

million years old time-slice shows an endemic spread within a particular ocean. The 

morphotype ME was found to be limited to the Pacific Ocean. The Morphotypes SH1 and 

SH2, which show a shiny shell surface, are restricted to the western Atlantic Ocean. 

Morphotype MC3 was observed at a single locality (ODP Site 661) in the eastern Atlantic.  

Our mapping experiment demonstrates the existence of biogeographic provincialism in 

Mid-Pliocene menardellids: in the Atlantic Ocean a western and an eastern menardellid 

province were found. Similarly, in the tropical to subtropical Pacific Ocean, menardellid 

faunas differentiated in a western Pacific margin province and an eastern tropical Pacific 

margin province. Indian Ocean menardellid faunas did not reveal any obvious biogeographic 

trends. 
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The proposed morphotypes show very strong overlap rendering the practical visual 

identification difficult. Among all morphometric parameters investigated the ratio of δY/δX in 

keel view proved to be the best combination of characters to separate morphotypes from each 

other. Size (as expressed by the area enclosed by the profile in keel view) is also a 

fundamental character, but it may be complicated by the demographic structure of the 

preserved ancient plankton population: while in a population, adults are usually identifiable 

without any difficulty, morphotypic differences are frequently hidden by the dominating 

number of smaller pre-adults with less well differentiated shell morphologies. This masking 

effect becomes even more pronounced if menardellid faunas are composed of more than one 

species.  
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Abstract 

Using micro dissolution of the umbilical side, we invested the morphological 

development of 350 specimens of the three Pliocene menardellid species composing the 

phylogenetic lineage of Globorotalia (Menardella) menardii - G. (Menardella) limbata - G. 

(Menardella) multicamerata. Based on internal shell structure, we measured the cross 

sectional area of successive chambers to establish growth curves. In addition, the chamber 

shape, the shell diameter and the pore density were analyzed to quantify morphological 

changes associated with growth. Our results demonstrate that the ontogenetic model of 

planktonic foraminifera, defined by Brummer et al. (1987) applied to menardellids as well. 

Growth is associated with 5 successive growth stages.  

Although there is common intergradation between the three menardellid species under 

consideration, adult specimens can be relatively easily distinguished using growth pattern. 

However, pre-adults or immature forms are virtually impossible to differentiate on the basis of 

external morphology. Intra-specific variability in growth stages is high, and show species-

specific pattern. Our study demonstrates that without a detailed knowledge about growth 

patterns, size is not a good estimator to ontogenetic stages in menardellid.  

The comparison of morphological development associated with growth revealed 

peramorphic heterochronic patterns between the three species. The phyletic increase in shell 

size among this lineage is the consequence of gradual hypermorphic extensions of the neanic 

stage in G. (M.) limbata and in the adult in G. (M.) multicamerata.  This evolutionary change 

is interpreted as an adaptation to shallower habitat and more K-strategy behavior.  
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5.1 Introduction 

The adult shell morphology of planktonic foraminifera is the basis of their 

classification, which is an important tool in biostratigraphy and paleoceanography. Intra-

specific shell morphological variability is however commonly high. Since the early 2000s, 

what was traditionally considered as ecophenotypic variations of morphology was associated 

with fundamental genetic differences (Kucera and Darling, 2002; Darling and Wade, 2008). 

Combined studies of molecular analysis with morphometric measurements revealed that 

morphological variation within the same genotypes can be considerable (Ujié et al., 2010; 

André et al., 2013) and is commonly explained by differences in habitat (Renaud and Schmidt 

2003; Al-Sabouni et al., 2007, Regenberg et al., 2010).  

The morphological plasticity of planktonic foraminifera is strongly controlled by 

ontogeny (Brummer et al., 1986; Hemleben et al., 1989). Shell development results in discrete 

and step-wise chamber addition on the spiral of earlier chambers. The entire ontogeny is 

consequently recorded within a single specimen. Individual tests therefore provide key 

information to understand the observed morphological variability in planktonic foraminifera. 

Investigations of early stages of ontogenetic growth involve, however, very labor-intensive 

techniques, like micro-radiographic imagery (Hedley, 1957; Bé et al., 1966; Leary and hart, 

1988 ; Georgescou et al., 2009), or novel X-ray computer micro-tomography (e.g. Speijer et 

al., 2008; Görög et al., 2012). These methods allow the study of foraminifera shell growth at 

the individual level, but remain time-consuming and not adapted to routine application in 

significant amounts of specimens.  

 Consequently, despite their central place in geosciences only  few studies exist so far 

on the developmental sequence in planktonic foraminifera (Brummer et al., 1987; Hemleben, 

1989; Wei et al., 1992, Huber, 1994). External morphological changes related to ontogenetic 

growth have also been documented for other taxa (Huang, 1981, Bummer et al., 1986). In 

addition, these pioneering studies emphased that the sequential study of ontogenetic growth is 

a very valuable way to characterize planktonic foraminiferal species, which otherwise are 

difficult to distinguish from their external shell morphologies (Brummer et al., 1987; Huber, 

1994). In addition, the comparison of developmental sequences among lineages eventually 
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allows the recognition of heterochronic patterns,  i.e. the recognition of evolutionary changes 

in timing or rate of developmental events, relative to the same events in the ancestor 

(McKinney and McNamara, 1991). Heterochrony is one of the major phenomenon that causes 

much morphological variations and is linked to major evolutionary novelties (e.g. Gould 1977 

; Albrecht et al., 1979; McKinney and McNamara, 1991; Webster and Zelditch, 2005). In 

biology (foraminifera excluded) heterochrony is often discussed solely by consideration of the 

external morphology (see Klingenberg 1998), using analysis of shell shape and size as an 

approximation of ontogenetic stage. In the case of foraminifera, notably in larger benthic 

foraminifera, there is an exhaustive body of literature describing heterochrony elements (as for 

example Drooger's "theory of nepionic acceleration") (McGillavry, 1963; Hofker, 1966; Van 

der Vlerk and Gloor, 1968; O'Herne, 1972; Van der Vlerk, 1973; Drooger, 1993; Hottinger, 

2001). In planktonic foraminifera heterochrony becomes meanwhile increasingly investigated 

as well (Nederbragt, 1989; Nederbragd, 1993; Wei, 1994; Kelly et al., 1996; MacLeod et al., 

2000; Kelly et al., 2001; Quillévéré et al., 2002). 

 Among planktonic foraminifera, menardellid globorotalids are a good example of 

morphological intergradation, especially during the Pliocene. At that time, a wide 

morphological plexus of poorly defined menardellid morpho-species occurred in tropical 

regions, encompassing the evolutionary lineage of Globorotalia menardii - G. (M.) limbata - 

G. (M.) multicamerata (Kennett and Srinivasan, 1983). The shell morphology of these species 

is characterized by a phylogenetic increase in the number of chambers in the final whorl: G. 

(M.) menardii has preferentially 5 to 6 chambers, versus 6 to 8 for G. (M.) limbata and 8 to up 

to 12 for G. (M.) multicamerata. This number of chamber overlap, together with their quite 

similar morphologies, has led to an intricate taxonomy (Cifelli and Scott, 1986; Bolli and 

Saunders, 1985). 

Menardellids are promising candidates for ontogenetic studies. Their relatively large 

low trochospiral test, showing only little chamber overlap, makes them a suitable to explore 

ontogenetic patterns. For these reasons, they have a long history of allometric investigations 

based on external morphology (Schmid, 1934; Cifelli and Glaçon 1978; Olsson, 1973; Scott, 

1973; Hemleben et al., 1977; Schweitzer, 1989; Schweizter and Lohmann 1991). Recently, we 

have experimented an extended worldwide morphometric mapping experiment of 
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menardellids at a Mid-Pliocene time-slice around 3.2 Ma (Mary and Knappertsbusch, in press; 

Mary et al., submitted).  

The present study fits into the extended worldwide morphometric mapping experiment 

of menardellids at a Mid-Pliocene time-slice around 3.2 Ma (Mary and Knappertsbusch, in 

press; Mary et al., submitted) and now concentrates on the ontogenetic growth of selected, 

phylogenetically related menardellids: G. (M.) menardii, G. (M.) limbata, and G. (M.) 

multicamerata. The first goal is to document their ontogenetic growth, and in this manner to 

further confirm the validity of geometric morphometric analysis based on external shell 

morphology in these selected examples. This will finally help to understand the taxonomic 

significance of the development sequence for the involved species, and to shed light to the 

evolutionary processes leading to the morphological diversification of the G. (M.) menardii-G. 

(M.) multicamerata lineage. 

As a significant number of specimens is required to distinguish between intra-specific 

variation and changes, a special technique was developed for the study of ontogenetic shell 

growth: the micro-dissection by dissolution of the umbilical side. This proved to be an 

efficient technique to reconstruct the ontogenetic growth of 350 specimens for the three 

species. 

 

5.2 The ontogenetic model of planktonic foraminifera 

Previous observations of planktonic Foraminifera internal shells have pointed out at 

similarities in their ontogenetic development. Their growth is subdivided in five different 

stages (Brummer et al., 1987; Wei et al., 1992;  Huber, 1994): the embryonic, juvenile, 

neanic, adult and terminal stages. The transitions between these stages are commonly 

associated with drastic phenotypic changes (Brummer et al., 1986, Huang, 1981). 

The proloculus,  i.e., the first chamber formed after fusion of the gametes, composes 

the embryonic stage and presents a flattening at the contact with the second chamber. The 

juvenile stage starts with the deuteroconch (second chamber), and has been documented to 

encompass 1.5 whorls, with a species-specific number of chambers (Huang, 1981; Brummer et 
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al., 1987). During this stage, the chambers show a uniform rate of growth, the second chamber 

being usually distinctly smaller than the proloculus (Brummer et al., 1987; Wei et al., 1992; 

Huber, 1994).  

A pronounced change in growth rate marks the onset of the neanic stage, which 

corresponds to the transition towards maturity. The amplitude of growth increase depends of 

the investigated taxa. An abrupt transition associated with drastic morphological changes is 

documented in globigerinid and globigerinoid species (Brummer et al., 1987). In contrast, the 

beginning of the neanic stage is less pronounced in the globorotalid species Globoconella 

inflata (Wei et al., 1992) 

Sexual maturity is reached during the adult stage. This stage is usually only composed 

of 2 to 3 chambers, and is characterized by small changes in external morphology, like for 

instance the development of secondary apertures in Globigerinoïds (Brummer et al., 1987). A 

fifth stage ends the planktonic foraminifera ontogeny, i.e., the terminal stage, representing the 

onset of reproduction (Brummer et al., 1987). Even if the individual is already mature during 

its adult stage, the terminal stage has been added because reproduction induces morphological 

changes that are visible on the external test and are directly related to completion of 

reproduction (Brummer et al., 1987). In many species indeed, the terminal stage is 

characterized by the addition of aberrant, kummerform chambers related to reproduction rather 

than normal growth (Hemleben et al., 1989). Reproduction ends the life cycle of the 

foraminiferal individual. 

 

5.3 Material and methods 

5.3.1 Material 

The single sample of ODP Site 667, which was selected at a time-level of 3.2 Ma 

(Mid-Pliocene) forms the basis for the present ontogenetic investigation in menardellids. This 

locality was selected for its high content in menardellids, its excellent carbonate preservation, 

and because specimens display a very high morphological diversity at this locality (Mary and 

Knappertsbusch, in press). The age model for Site 667 follows the one of Mary and 
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Knappertsbusch (in press), based on the combination of the microfossil range chart of the 

Neptune database and the ODP Initial Report for Leg 108.  

A few cubic centimeters of bulk material was first disaggregated in boiling water, and 

then sieved through a 63µm sieve and gently washed under tap water. The fraction <63µm 

was retained but was not further used in this study. The sample was oven-dried at 40°C during 

24 hours. Dry sediment was then sieved into seven size fractions : <100µm, [100-200µm], 

[200-300µm], [300-400µm], [400-500µm], [500-600µm] and >600µm. The fraction <100 µm 

was disregarded for analysis. Approximately 60 menardellid specimens per size class were 

then randomly selected among undamaged individuals showing no sign of missing chambers, 

for a total of 350 specimens. Specimens were then visually classified into G. (M.) menardii, G. 

(M.) limbata, and G. (M.) multicamerata according to Kennett and Srinivasan (1983) and 

following morphological criteria statistically identified by Mary and Knappertsbusch (in 

press). The fraction <100 µm was disregarded for analysis. 

 

5.3.2 Micro-dissolution of the umbilical side  

In contrast to the time-consuming serial dissection method of Huber (1994) and Huang  

(1981), a new protocol was developed, allowing a simple but accurate and more time efficient 

method, to study the interior geometry of planktonic foraminifera under a binocular 

microscope. Instead of physically dissecting the shell, the umbilical face was removed using 

hydrochloric acid (HCl) until juvenile portions of the shell could directly be observed. 

Menardellid specimens are first mounted on a standard micro-faunal slide, with 

umbilical side facing up, using a watery solution of paper glue, in which we add few drops of 

a solution of sodium hydroxide (NaOH). The volume of this alkaline solution must be 

sufficient to embrace the entire spiral side, leaving only the keel and the umbilical side above. 

This solution limits the reaction of HCl with calcite on the spiral side of the shell. The 

dissection must start immediately after the specimen is put in the glue, before the solution 

dries.  
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Removal of the umbilical side was done manually using a fine paintbrush soaked in a 

concentrated solution of HCl. In every individual whorl the umbilical face of chambers were 

gently brushed away in the acid microenvironment until the proloculus became visible. When 

reaching the most juvenile chambers, little extra acid was added by subtly touching them with 

the paintbrush. Then the reaction was interrupted by addition drops of NaOH. Repeatedly 

brushing over the chambers leads to selective removal of calcite layers of the chambers. 

Once opened, specimens are gently rinsed with tap-water to remove dissolution 

remnants and infillings, and then placed in a bath of NaOH solution during 48h to neutralize 

remaining acid. The specimen was rinsed again with water before being stored in standard 

micro-faunal slides. The entire procedure takes 10 to 15 minutes in average per specimen. 

 

 

Figure 5.1: Example of a serially dissected specimen using the dissection by dissolution technique. 

 

Serial micro-dissolution is very time- and cost-efficient for accessing the ontogenetic 

growth pattern of planktonic foraminifera in comparison with classic physical shell 

dissections. Some limitations, however, arise through the use of acid, which may obviously 

destroy specimens if treated too long. The rate of loss depends on shell size, but also on 

geometry, and of course on the investigator's practical experience: small, highly-spired 

specimens are very difficult to open. For example, in the size fraction 100-200µm 97 

specimens were treated to obtain 60 successful preparations (experimental loss of 38%), 

whereas only 8% of the specimens were lost in the 500-600µm fraction. A total of 450 

specimens were selected from sample ODP Site 667, of which 350 specimens could be 

successfully prepared for our ontogenetic measurements. Another disadvantage is the post 
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experimental nucleation of salt crystals probably byproducts of the dissolution reaction, after 

extended exposure of the specimen to air, which eventually may cover and obscure the 

innermost chambers. 

 

5.3.4 Imaging and measurements 

Imaging of opened specimens was carried out using a Philips XL30 FEG ESEM at the 

microscopy center of the University of Basel. Specimens were mounted on SEM stubs in 

homologous positions before coating them with gold. Measurements were extracted from the 

pictures using the software ImageJ, which is in the public domain (http://rsb.info.nih.giv/ij/) 

and the commercial package Adobe Photoshop. For every specimen, the total number of 

chambers was determined; the cross sectional area and perimeter of each individual chamber 

was measured. The number of chambers per whorl was also counted, starting from the 

deuteroconch. The axial diameter of the shell was manually measured after each whorl. In 

order to compare with external morphology, the number of chambers in the external final 

whorl was counted, beginning from the last (adult) chamber.  

For every chamber, the Circularity Factor (Fci) (Kucera and Kennett, (2002)) and 

Growth rate (Gr) were calculated. The Circularity Factor is a shape indicator and represents 

the difference between the perimeter of an object and the one of a disc with the same area, 

following the formula: 

Circularity Factor: Fci = P / 2 √ (π A) 

Where P is the perimeter and A the cross sectional area of a given chamber.  It equals 1 

if the object is perfectly circular, and decreases for elongated morphologies. In this study, the 

Circularity Factor is used as a mean to characterize changes of chamber shape through 

ontogeny. The Growth rate is calculated from neighboring chamber areas: it represents the 

relative incremental increase from one chamber to the next, following the formula:  
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Growth rate: Gr = 100*(An -A (n+1))/An 

Where An stands for the cross sectional area of the nth chamber and An+1 for the one 

of the n+1th. Gr is generally negative when the specimen reaches adultness, because of 

successive reduction in size of the chamber in the adult (Wei et al., 1992; Huber, 1994).  

The number of pores per surface unit, i.e., pore density, can be accurately estimated per 

individual chamber from the inner surface of the test. Pores are however fragile structures, 

susceptible to infilling or secondary calcification during ontogeny (Brummer et al., 1987). The 

use of acid often leads to enlarged pore diameters, preventing precise measurements of pore 

size or geometry (pers. obs.). The last chambers are more likely to be damaged by the acid 

than the early whorl: the thicker is the wall, the longer must be the exposure time to the acid to 

dissolve it, the more the pores are edged by the acid. For all these reasons, a selection of our 

best preserved specimens was done for our morphometric analyses, and only pore density per 

chamber was measured.  

Two different procedures were involved to calculate pore density. For juvenile whorls, 

the number of pores is counted visually. When the number of pores per chamber is too high 

(arbitrarily defined as over 50), the particle analyzer of the software ImageJ was used on the 

entire chamber. The total number of pores is then divided by chamber area to obtain pore 

density (pores per µm2). In case of altered surface or if pores are filled by sediments or 

dissolution residues, non affected sub-sample areas were taken. The dimension of the sub-

sample is chosen to be the closest possible to chamber area. 

 

5.4 Results 

5.4.1 Cross sectional area with respect to the total number of chambers 

Figure 5.2 summarizes the ontogenetic growth and represents the raw data for all 350 

specimens of G. (M.) menardii, G. (M.) limbata and G. (M.) multicamerata together. Figure 
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5.2A describes the growth of cross-sectional areas of successive chambers, which represents 

an  

 

Figure 5.2: Size dependant ontogenetic growth of Pliocene menardellids. (A) cross sectional area of 

individual chambers in relationship with the total number of chamber. The six analyzed size classes are 

grouped into three size fractions: 100-300 µm, 300-500 µm and >500 µm. Shaded areas are delimited by 

maximum and minimum value and represent preferential growth trajectories. (B) Size dependant growth 

curves at constant number of chambers (21 chambers, which correspond to the average total number of 
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chambers of all investigated specimens). The six investigated size classes are represented, respectively 500-

600 µm and >600 µm (B1), 300-400 µm and 400-500 µm (B2), (B3) 100-200 µm and 200-300 µm. The I to 

IV intervals represents the different growth stages (I: embryonic II: juvenile III: neanic IV: adult).  

accurate mean to describe the rate of chamber increase throughout ontogeny. The growth 

curves of specimens in the six size classes are first grouped into three diagrams, respectively 

the large (>500µm), medium (300-500µm) and small fraction (100-300µm). For clarity 

reasons, only the mean growth curves and the maxima and minima for chamber size increase 

are shown.  

Growth profiles of the three size classes parallel each other and entirely overlap for the 

first 12 chambers (Figure 5.2A). The variability in chamber area increases thereafter. 

Specimens reach high chamber area values between chamber 19 and 26. Interestingly, the total 

number of chambers shows comparatively little variation between the three size classes. On 

average, the small fraction shows values of total chamber number of 17, versus 21 and 24 for 

the medium and large fraction, respectively (not shown on Figure 5.2).   

Intra-class variability of chamber number is however high (from 12 to 30). In order to 

remove the effects of chamber number variations, and for better identification of growth 

stages, specimens with 21 chambers are plotted separately for the six investigated size 

fractions (Figure 5.2B). The value of 21 chambers was chosen because it represents an average 

chamber number for the entire sample. Each of these growth curves can be subdivided in 5 

different phases, which correspond to the well-known ontogenetic stages identified in 

planktonic foraminifera (Brummer et al., 1987) (Figure 5.2B for mean curves by size-

fractions, Figure 5.3 for examples of individual growth curves). 

The first ontogenetic stage (I) of menardellid globorotalids consists of the proloculus. 

Individual growth starts with the juvenile stage (II), which is marked by a distinct decrease of 

cross-sectional chamber area values at chamber number 2. This stage approximately spans 6 

chambers with a constant chamber area increase during the entire stage. On average curves, 

the transition between the juvenile and the neanic stages is constant, although it can be marked 

by a pronounced slope break at the end of the juvenile stage in individual growth curves (see 

Figure 5.3). On average, the neanic stage (III) does not differ significantly from the juvenile 

(II), although variability exists, which is different in other planktonic foraminiferal species 



Chapter 5: Ontogenetic variability 

 145 

(Brummer et al., 1987; Wei et al., 1992). It consists of a linear increase of chamber area until 

adultness. The length of this stage (in chamber number)  

 

Figure 5.3: Example of individual growth curve (chamber cross sectional area versus number of chamber), 

for three menardellid specimens in the three size fractions. The specimens are selected to illustrate case of 

well defined transition between growth stages and to have reached reproduction. The I to V intervals 

represents the different growth stages (I: embryonic II: juvenile III: neanic IV: adult V: terminal).  

 

shows a relatively high variability regardless of the size fraction. Stage IV corresponds to the 

sexual maturity of the menardellids, and is manifested by a peak or a plateau, after which the 

growth curve starts to decrease. The length of this stage (in chamber numbers) strongly differs 

from one individual to the next, i.e., it ranges from 2 to 12 chambers.  

The fifth stage, the terminal stage, is not well visible on averaged growth curves, but 

can well be observed in individual specimens (Figure 5.3). In each size class, specimens with 

terminal kummerform chambers are observed. Kummerform chambers are associated with 

gametogenesis (Hemlebem et al., 1989) indicating completion of the planktonic foraminiferal 

maturation (Brummer et al., 1987; Wei et al., 1992), [not visible in Figure 5.2]. In the pilot 

ontogenetic  study of Brown (2007) similar observations for extant menardellids are described 

as well. In this context, specimens from the smallest size fraction bearing kummerform 

chambersrepresent mature individuals, which strongly contradicts the established view that 

small specimens equal juvenile forms.  
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5.4.2 Specific ontogenetic trends of Pliocene menardellids 

Specific growth curves are calculated by averaging the cross sectional area of 

individual chambers for all adult specimens of the three chosen species separately. Adults are 

isolated from immature specimens on the basis of their growth curves: individuals showing a 

distinct decrease in growth rate at the end of their development are considered mature, 

following the planktonic foraminiferal ontogenetic model of Brummer et al. (1987).  

Though it is often difficult to differentiate between menardellids on the basis of their 

external shell morphology (Knappertsbusch, 2007; Mary and Knappertsbusch, in press), G. 

(M.) menardii, G. (M.) limbata and G. (M.) multicamerata are clearly discernible using the 

ontogenetic growth curves (Figure 5.4A). Although there is overlap in the earlier chambers, 

growth trajectories show specific patterns after chamber number 7, which corresponds to the 

onset of the neanic stage. G. (M.) limbata is characterized by a sharp increase of growth 

leading to larger chamber area.  G. (M.) menardii and G. (M.) multicamerata show a lower 

slope in comparison, the latter is characterized by constant mean chamber area values up to the 

20th chamber.  G. (M.) menardii shows the lowermost values, located in the lowermost part of 

the diagram (Figure 5.4A). 

To further characterize the distribution of menardellid specimens according to their 

ontogeny, we show the distribution of the cross sectional area of the penultimate chamber with 

respect to the total number of chambers of adult specimens (Figure 5.4B). A contoured 

frequency diagram is used to show the density distribution of the individuals. The penultimate 

chamber is selected to summarize the ontogenetic adultness position on the growth curve, as 

the variability in the chamber area is higher in the terminal development stage. This chamber 

was selected instead of the last one because it is less affected by kummerform diminution or 

flexure of the terminal chamber. The total number of chambers is chosen as a proxy for 

relative ontogenetic time.  
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Figure 5.4: Ontogenetic characterization of the three menardellid species G. (M.) menardii, G. (M.) limbata 

and G. (M.) multicamerata. Only specimens explicitly reaching the adult stage are represented (N= 259) (A) 

Plot of the average cross sectional area of chambers of adult specimens in respect to the chamber number 

per menardellid species. (B) Contoured frequency distribution showing density of adult specimen 

ontogenetic distribution. The penultimate chamber is selected to summarize the ontogenetic trajectory and 

is plotted versus the total number of chamber. (C). Scatter plot of the penultimate chamber area versus 

total number of chamber. Specimens are represented according to their number of chamber in the last 

whorl, showing preferential distribution of chamber number according to the three species.  

The distribution of adult specimens clearly shows three clusters, which reflect specific 

differences in growth curves. As a comparison with traditional taxonomy, the external number 

of chambers in the final whorl is shown in Figure 5.4C. The result is in agreement with the 
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formal classification of Pliocene menardellid morpho-species according to their number of 

chambers (Kennett and Srinivasan 1983; Bolli and Saunders 1985). G. (M.) menardii holds 

commonly 5 to 6 chambers in the last whorl, versus 6 to 8 for G. (M.) limbata, and 7 to up to 

12 for G. (M.) multicamerata. 

 

5.4.3 Ontogenetic variability in number of chambers per whorl 

From the external side, menardellids share a near to homeomorphic morphology, 

differing mostly in number of chambers in the last whorl. This feature is traditionally 

considered as the most important taxonomic parameter to classify Pliocene menardellid 

morpho-species (Kennett and Srinivasan 1983; Bolli and Saunders 1985). The number of 

chambers in the final whorl (external) is a strong allometric feature (Mary and 

Knappertsbusch, in press): small specimens commonly hold 5 to 6 chambers in the last whorl, 

whereas the largest ones bear up to 12. Our sample reflects such results (Figure 5.5A). It is 

therefore interesting to investigate the evolution of chamber number per whorl during the 

ontogeny. In this purpose, we plot the number of chambers for each whorl in respect to axial 

diameter frequency distribution, from the proloculus to the fourth (final) whorl (Figure 5.5B-

E).  

Adult menardellids show between 2 and 4 whorls. Prolocular diameters are comparable 

for all investigated menardellids, showing a unimodal distribution from 10 to 37 µm (Figure 

5.5E).  All measured proloculi display a rounded outline with a distinct flattening of the wall 

at the location where the deuteroconch joins. Cross sectional area of the proloculus shows a 

unimodal distribution as well, distributed from 88µm² to 744µm². 
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Figure 5.5 (on previous page): area plot of the evolution of the relative proportion of number of chamber 

per whorl in comparison with shell diameter frequency distribution. Data is shown for each whorl.  The 

distribution of the three menardellid species, G. (M.) menardii, G. (M.) limbata and G. (M.) multicamerata 

are represented by Gaussian fitting when possible (B and C). Otherwise, the entire frequency distribution 

is fitted (D-E-F).  (A) composition of chamber number in respect with diameter frequency distribution per 

last whorl (external).(B-D) distribution of the chamber number in respect with shell diameter frequency 

distribution in the forth, third and second whorl respectively. Note the drastic reduction of chamber 

number diversity in the early whorl. (E) proportion of the number of chamber in the first whorl in respect 

with shell diameter frequency distribution. The frequency distribution of prolocular diameter is shown in 

addition. 

 

The first whorl, starting with the deuteroconch, displays a remarkably constant number 

of chambers (Figure 5.5E, in blue), showing preferentially between 6 to 8 chambers with a 

strong dominance of 7 chambers (81% regardless of the species). Axial diameter shows an 

unimodal distribution, centered on 100µm. Similarly, the composition of chamber number in 

the second whorl is also fairly uniform, showing a small reduction of chamber number in 

comparison to the first whorl, holding rather 6 than 7 chambers (65%, Figure 5.5D). The shell 

reaches a diameter of 245µm in average.  

In the third whorl chamber-per-whorl variability becomes suddenly larger. In 

comparison to the previous whorls, this number changes in respect to shell diameter values: 

small specimens reaching three whorls display a lower chamber number, whereas large 

specimens are characterized by higher values. The axial diameter of the third whorl is 

characterized by a strong variability as well, spanning between approximately 200 and 1000 

µm. The frequency distribution of the axial diameter in the third whorl can be decomposed in 

three distinct modes, which correspond to the three menardellids, determined by Gaussian best 

fitting (Figure 5.5C). The first is located at 322 µm and includes forms with 1 to 6 chambers in 

the third whorl (more commonly 3), the latter being incomplete. Although it could be 

interpreted as an evidence of immaturity, some of these individuals display a deformed 

kummerform chamber, which means that they have undergone reproduction. The second mode 

is situated at 505µm and is composed of 5 to 8 chambers per whorl, and the third has a modal 

value of 743 µm and displays 8 to up to 12 chambers per whorl.  
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The frequency curve for specimens having four whorls can be decomposed in two 

modes with respect to their axial diameter values, corresponding to the second and the third 

mode of the third whorl. They show slightly larger modal sizes (670 and 858 µm, 

respectively). The fourth whorl was observed to never be completed in our Mid-Pliocene 

sample, regardless of the number of chambers it holds. The number of chambers is mostly less 

than 6 and is comparable for every specimen reaching 4 whorls. There is no apparent 

correlation between the number of chambers in this 4th final whorl (internal morphology) and 

the number of chambers in the final whorl (external morphology). 

In summary, differences in shell morphology are visible only when at least three 

whorls are reached. Before that, all menardellid species share the same number of chamber per 

whorl, independently on the ontogenetic age. 

 

5.4.4 Intra-specific variability of ontogenetic stages 

The high number of investigated specimens allows the detailed study of the intra-

specific variability. To better visualize this pattern, the relative length of the ontogenetic 

stages were plotted with respect to the total number of chambers, which is attained until 

maturity (Figure 5.6). For each of the three species, specimens from the assemblage were re-

grouped specifically according to their total number of chambers, i.e. 13-21 (G. (M.) 

menardii), 17-25 (G. (M.) limbata), and 20-30 (G. (M.) multicamerata). These numbers 

represent the specific minimum and maximum total number of chambers. For each group, the 

profile of the mean relative growth rate (Gr) was studied for successive chambers. The number 

of chambers is used as a relative age of the individual.  

Gr profile variations allow the separation of the different growth stages. Normalization 

of variability enhances the transition between the juvenile and the neanic stages in comparison 

to growth curves (cross sectional chamber area versus chamber number). Such transitions are 

then marked by a pronounced and stable increase of Gr values. In contrast, individual maturity 

of the menardellid shell is indicated by a distinct plateau within the falling trend of Gr. This 

corresponds to a slow-down of growth while becoming adult (Brummer et al., 1987; Wei,  
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Figure 5.6: intra-specific variability of ontogenetic stages in the three species G. (M.) menardii, G. (M.) 

limbata and G. (M.) multicamerata. Specimens are classified according to their total number of chambers, 

indicated in the up-right corner of each diagrams, from the minimum to the maximum number of 

chamber. Each individual diagram represents the average relative incremental growth rate (Gr) per 

chamber for a given total number of chambers. The relative ontogenetic length (in number of chamber) is 

represented for three growth stages: juvenile (light grey), neanic (grey) and adult (dark grey). Limits of the 

three growth stages are delimited ± 1 chamber.  (A)  plots of Gr in function of chamber number for the 

species G. (M.) menardii. (B) plots of Gr in function of chamber number for the species G. (M.) limbata. (C) 

plots of Gr in function of chamber number for the species G. (M.) multicamerata.   
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1992). The comparison of different growth curves suggests that adultness is indicated by a 

pronounced decrease of Gr by more than about 25% (Figure 5.6). The approximate limits of 

the so identified growth stages are marked on growth diagrams with a precision of ± 1 

chamber. Intra-specific variation is displayed by showing the evolution of the different stages 

with respect to changing number of chambers (Figure 5.6).  

Average Gr values per chamber show only little variation within and between species. 

G. (M.) menardii and G. (M.) multicamerata display a rather similar, constant chamber 

increment by about 50% (Figure 5.6A and 5.6C, respectively). In comparison, the growth rate 

seen in G. (M.) limbata is slightly higher during the neanic stages, rather reaching 75% (Figure 

5.6B). The intra-specific neanic variability of Gr is, however, important between specimens. 

Gr values are higher during the neanic stage when the total chamber number is reduced.  

The number of chambers of the juvenile stages (± 1 chamber) is remarkably constant 

regardless of total chamber number variability. This stage generally lasts until the 6th chamber 

in all three species. In contrast, the neanic stage shows a broader variability in G. (M.) 

menardii (Figure 6 A). On average, specimens holding 13 chambers show a neanic stage of 6 

chambers versus 13 for the individuals with 21 chambers. Similarly, the neanic stage of G. 

(M.) limbata increases with the number of chambers, ranging from 10 to 18 chambers (Figure 

5.6B). The adult stages are comparable in both species, occurring only in the last few 

chambers. 

In contrast, the neanic stage of G. (M.) multicamerata displays similar values 

regardless of total chamber number, and is composed of 12 to 15 chambers (Figure 5.6C). 

Most of the variability in development is explained by variations of number of chambers in the 

adult stage, which varies from 3 to 9 chambers in average, although higher variability occurs 

when individual specimens are considered. Specimen maturity is represented by a constant 

decrease of growth rates below 25% to reach negative values in the terminal chambers. This 

species shows an extension of the adult stage in comparison to the other species. 
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5.4.5 Morphological changes associated with growth stages 

In order to emphasize the differences in the timing of development of morphological 

features, the evolution of chamber shape and pore density through ontogeny was investigated 

(Figure 5.7). Both indicate the transition from one developmental stage to another within 

individual specimens. In order to better recognize growth stages, the incremental relative 

growth rate (Gr) is also displayed in Figure 5.7. Pore density is a good indicator of exchange 

between an organism and its environment, or more generally of trophic behavior (Huber, 

1994). It can therefore be interpreted as a proxy for metabolism. Individual chamber shape is 

known to be a significant parameter in globorotalid taxonomy. Chambers have been classified 

according to their shape on the spiral side (Cifelli and Glaçon, 1978; Cifelli and Scott, 1986). 

Among others, three distinct morphologies have been described by the latter authors, based 

mainly on the angular position of the leading margin and on radial elongation (see Figure 5.7): 

Type I represents rounded, broadly radial chamber morphologies. A and B-Type morphologies 

are characterized the degree of elongation in the direction of coiling. Chamber type C is a 

typical menardellid morphology, which is characterized by radial elongation (see comparison 

of the different chamber types on Figure 5.7). Variation between types A to C describes the 

amount of radial rotation of the chamber outline. Chamber shape is quantified by the 

Circularity factor (Fci, see section on Imaging and measurements under Materials and 

Methods).   

Both pore density and Fci parameters show pronounced variation from juvenile to 

neanic and from neanic to adult stages. The morphology of individual chambers of G. (M.) 

menardii shows a stepwise change during ontogeny (Figure 5.7A). Fci values are commonly 

high during the prolocular and juvenile stages (0.8), which correspond to circular, rounded 

Type I morphologies, associated with immaturity in G. (M.) menardii. An abrupt decrease of 

chamber circularity marks the onset of the neanic stage, to reach an approximate plateau 

around 0.65 Fci value. Chamber morphology becomes more radially compressed and 

elongated in the coiling direction, corresponding to type B chamber. Fci increases again at the 

transition with the adult stage to reach 0.7, developing radial elongated, Type C chambers. 
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Figure 5.7: specific variability of pore density and chamber shape change in respect to ontogenetic growth. 

For each species, average pore density, average growth rate and average circularity factors are displayed. 

To visualize intra specific variability in our sample, minimum and maximum values of pore density are 

added. Chamber shape changes are represented using schematic drawing of one specimen chamber for 

each species. This specimen is arbitrarily selected for showing Fci values closed to the specific mean. 

Chamber type classification is added (after Cifelli and Scott (1986) (A). Fci, Gr and pore density of 

successive chambers of G. (M.) menardii. Juvenile, neanic and adult growth stages are represented. (B). 

Fci, Gr and pore density of successive chambers of G. (M.) limbata. (C). Fci, Gr and pore density of 

successive chambers of G. (M.) multicamerata. 
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A similar trend is observed in G. (M.) limbata (Figure 5.7B), and G. (M.) 

multicamerata (Figure 5.7C) although Fci values are distinctly lower in average during the 

juvenile stage (0.8 in G. (M.) menardii and 0.7 in the two other menardellid species). These 

two species develop chamber type B earlier in their ontogeny, during the juvenile stage. 

Transitional chamber shape change in the beginning of the neanic stage is more gradual, 

especially in G. (M.) multicamerata. In this species, Fci remains relatively low during the 

adult stage as well. This species developed extremely axially elongated Type C chambers with 

decreasing Fci values (Figure 5.7C).  

Likewise, individual chamber pore density shows also three different phases. Values in 

G. (M.) menardii are minimal during the juvenile stage; then strongly increase at the end of the 

juvenile stage to reach a peak in the middle of the neanic stage. They subsequently decrease 

around chamber number 14-18, marking the onset of the adult stage. G. (M.) menardii 

chamber pore density (Figure 5.7A) during the juvenile stage is indeed very low in average 

(0.05 pore.µm-2). Individuals showing no pores in the early chambers are frequent. Pore 

density values increase strongly to reach an average of 0.022 pore.µm-2 towards the middle of 

their ontogeny, and finally decrease gradually towards the adult stage.  

The position of the pore density peak in the neanic stage (around chamber n°11) is 

similar in the three menardellid species. At the opposite the development of pore density 

during the juvenile stage is variable. In comparison with G. (M.) menardii, the pore density 

profile of G. (M.) limbata shows a more gradual transition from the juvenile to the neanic 

stage (Figure 5.7B). The number of pore per surface increases constantly from the 

deuteroconch to maximum values at chamber n°10-12. This species reaches, however, higher 

values of pore density in comparison to its ancestor G. (M.) menardii, which correspond to 

higher incremental growth rate at the beginning of the neanic stage (between chamber n°9 and 

chamber n°14). G. (M.) multicamerata developed relatively high pore density at the very 

beginning of the juvenile stage (0.012 pore.µm-2). Pore density values in the early ontogeny 

are comparable to the situation observed in the adult stage. The latter is longer in G. (M.) 

multicamerata showing an extended plateau at the end of the pore density curve.  
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5.5 Discussion 

5.5.1 Contribution to menardellid classification 

The menardellid classification has been a matter of debate for a long time (see Brown, 

2007, and Knappertsbusch, 2007 for reviews). Confusion originates from multiple clinal 

morphological changes, strong convergence in allometry, and from the large individual 

morphological plasticity (Knappertsbusch, 2007; Regenberg et al., 2010; Mary and 

Knappertsbusch, in press). The taxonomy of Mid-Pliocene menardellid has been recently 

revised by Mary et al., (submitted). They concluded that the classification in use and based 

solely on the number of chambers in the final whorl may sometimes be misleading. Shell size 

differences are an at least equally important criterion to differentiate between different 

menardellid populations.  

Ontogenetic data confirm that Pliocene variants of G. (M.) menardii are separated from 

the two other menardellid species by a distinctly smaller test, which corresponds to 

morphotype MA identified in Mary and Knappertsbusch (in press). In contrast, large 5 and 6-

chambered forms, traditionally associated with G. (M.) menardii, do not show any significant 

ontogenetic or developmental differences with 7-chambered forms, which are assigned to G. 

(M.) limbata. Small mature specimens show distinct morphological features and ontogenetic 

growth pattern (Figure 5.5). A distinction between small and large Miocene G. (M.) menardii 

was already suggested in DSDP Leg 4 by Bolli (1970) in the Pliocene of the Mediterranean 

Sea. According to these authors, menardellids could be classified into small, 5 to 6 chambers 

individuals under the informal name "menardii A", whereas the large specimens having 5 to 7 

chambers could be designated as "menardii B". Mary and Knappertsbusch (in press) and Mary 

et al., (submitted) demonstrated that a similar pattern existed in the Pliocene time-slice as 

well. The ontogenetic comparison of our specimens is in agreement with this opinion. 

Differences in global shell size are therefore a necessary criterion to differentiate Pliocene 

menardellid species.   

In addition, the present observations show that the total number of chambers in adult 

specimens is an important characteristic to distinguish between G. (M.) menardii, G. (M.) 

limbata and G. (M.) multicamerata, although this parameter is difficult to obtain from the 
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external surface of the shell. Menardellid juvenile stages mainly span 6 to 7 chambers (i.e. 

neanic stages starting at the chamber number 7-8), and no specific variation could be 

observed. The number of chambers per whorl is variable through ontogeny, but is strongly 

convergent in the early whorl. Juvenile and neanic individuals therefore remain virtually 

impossible to distinguish from their external morphology: the majority of them has 7 

chambers in the first whorl, while the second whorl preferentially shows 6 chambers in the 

early neanic stage. Consequently, premature specimens of G. (M.) multicamerata or G. (M.) 

limbata may easily be misclassified as G. (M.) menardii. Nevertheless, the number of 

chambers in the last whorl can be applied to some degree to identify specimens belonging to 

G. (M.) multicamerata, especially when this number is higher than 8. 

 

5.5.2 Compared development of menardellid species 

The present study provides a unique opportunity to compare the developmental 

sequences of planktonic foraminifera within a phylogenetic lineage, in order to investigate 

heterochronic patterns. The identification of such processes in planktonic foraminifera has 

only been based, thus far, on allometric studies (Wei et al., 1994, Kelly et al., 1996, Kelly et 

al., 2001, Quillévéré et al., 2002.) These studies rely on the assumption that size reflects 

ontogenetic time (the larger the organism is, the longer is the period of maturation). As 

pointed out by evolutionary biologists, in some cases, this hypothesis may not be true 

(Klingerberg, 1998; Smith 2001, Schmidt et al., 2006). In planktonic foraminifera, instead of 

reaching premature death in ontogeny, small specimens have been documented to show 

reproductive structures (Schmidt et al., 2008), designated as micromorph by Huber (1994). 

Our study confirms the descriptions of Huber (1994): intra-specific variability of growth 

stages strongly affects the correlation between size and ontogenetic age. 

In our case, we directly compared the ontogenetic sequences of the organisms. We thus 

put the emphasis on the fundamental dimension of developmental timing in heterochrony, 

only implicit in allometry studies (Klingerberg, 1998; McKinney 1999). We concentrated on 

the evolution of size and chamber morphology during the whole ontogeny, which summarizes 

most of the morphological variability in menardellids (Cifelli and Scott, 1986; Bolli and 
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Saunders 1985; Mary and Knappertsbusch, in press). We can therefore make solid 

interpretations of morphological changes between menardellid species in terms of 

heterochrony. 

Our results suggest that the evolutionary trend in the G. (M.) menardii- G. (M.)-

limbata- G. (M.) multicamerata lineage can be related to fundamental developmental 

differences. Figure 8 summarizes this evolutionary change and shows the successive delays of 

maturity together with size increase between G. (M.) menardii and G. (M.) limbata, and 

between G. (M.) limbata and G. (M.) multicamerata. In this context, the morphological 

differences between the three menardellid species, seen in Figure 5.5, can be interpreted as the 

result of Peramorphosis. A given descendant is peramorphic if its morphological development 

expands further than that of its ancestor at the same ontogenetic stage, producing 

overdeveloped adult traits or morphology (McNamara 1986).  

The morphological transition from small, holding a small number of chamber G. (M.) 

menardii morphology (in contrast with extant larger G. (M.) menardii, Knappertsbusch, 2007) 

to the very large shell and multi-chambered morphology of G. (M.) multicamerata can be 

considered as a heterochronocline (directional morphological change among phylogenetic 

lineage explained by successive heterochronic changes). 

5.5.2.1 Peramorphic development of G. (M.) limbata with respect to G. (M.) menardii 

Chambers shape during the juvenile stages of G. (M.) limbata is similar to that of the 

neanic stage of G. (M.) menardii. This morphological trait shows an earlier onset of change in 

the descendant species than in the ancestor, the ontogenetic direction of morphological change 

remaining unchanged. These are clear evidence of a pre-displacement in chamber shape. The 

general morphology of the test remains largely similar.  

The size difference between the two species is explained by an extended, although 

variable, neanic stage, but both juvenile and adult stages remain similar in terms of 

ontogenetic relative time (Figure 5.8). The development of extended neanic stage, where the 

growth is maximal, without pronounced morphological changes, can be seen as an indication 

of directional selection of larger size (Cope's rule). G. (M.) limbata shows a hypermorphic 

growth (extension of growth resulting in a delay of sexual maturation), which is followed by a 
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relatively short adultness, similarly to its ancestor, before reaching reproduction at the end of 

its life cycle.  

Morphologically, the formation of radial elongated (Type B) chambers occurring 

earlier in ontogeny confers a more rounded shell morphology which allows the species to pack 

more chambers in the latest (adult) whorl. G. (M.) limbata therefore develops multi-

chambered morphology holding up to 8 chambers in the final whorl. Such a change could 

easily be a secondary by-product of size increase related to allometric growth. 

5.5.2.2 Peramorphic development of G. (M.) multicamerata with respect to G. (M.) 

limbata 

The ontogeny of G. (M.) multicamerata shows evidence of peramorphic change in 

comparison to its ancestor G. (M.) limbata. Albeit differences between G. (M.) menardii and 

G. (M.) limbata are concentrated in the neanic stage, G. (M.) multicamerata shows 

modifications in the latest part of its life cycle. Juvenile and neanic stages of G. (M.) 

multicamerata and G. (M.) limbata are comparable, either in their length or in the chamber 

morphology. In terms of development, the ontogenetic sequence remains mostly unchanged, 

but is prolonged during the adult stage. 

Maturity in G. (M.) multicamerata is morphologically characterized by the addition of 

axially elongated Type C chambers, similarly to G. (M.) limbata. The prolongation of the adult 

stage induces an augmentation of the number of Type C chambers in the terminal whorl: 9 

chambers versus 4 in G. (M.) limbata (Figure 5.5). The onset of the terminal stage is delayed 

in comparison to its ancestor, and the general size of the test increases (Figure 5.8). These 

observations are clear evidences of hypermorphosis. Morphologically, the development of 

large, elongated shell together with the increment of more radial oriented Type C chambers 

have been interpreted by Scott (1973) to compensate the hydromechanical disadvantage of 

large size by developing an elongated, axially compressed shell morphology, augmenting shell 

buoyancy. The consequence is that G. (M.) multicamerata, in comparison to G. (M.) limbata, 

reaches larger size during the Pliocene (Figure 5.8). 
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Figure 5.8: inter-specific comparison of relative ontogenetic length and associated change in chamber 

morphology, compared to size frequency distribution of the three menardellid species at site ODP 667 

(after Mary and Knappertsbusch, in press). Gaussian distribution represents the distribution of G. (M.) 

multicamerata, G. (M.) limbata and G. (M.) menardii. The average length of the all adult specimens is 

compared for the three species. The phylogenetic scheme is from Kennett and Srinivasan (1983).  

 

5.5.3 The ecological meaning of heterochrony in Pliocene menardellid 

Independent geochemical evidences exist for ecological adaptations of menardellids 

during the Pliocene. The comparison of Atlantic G. (M.) limbata with G. (M.) multicamerata 

δ18O (adult shells, >250µm) indicates a gradual occupation into different niches of the two 
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species, the latter rising to shallower habitats from the late Miocene to early Pliocene (Pfuhl 

and Shackleton, 2004). Considering Mid-Pliocene growth of G. (M.) multicamerata, such an 

adaptation would be consistent with the observed prolonged adult mode of this species. Pfuhl 

and Shackleton (2004) further interpreted this displacement to a new ecological niche as a 

response to mixed layer destabilization after 5.77Ma.  

The evolutionary change of the ontogenetic sequence of G. (M.) multicamerata are 

corroborating indications of ecological separation between this species and its ancestor G. (M.) 

limbata. The extension of especially the adult stage, together with the pre-displacement of 

chamber morphological characters, point out to a prolonged stay of G. (M.) multicamerata in 

its adult habitat. This is in contrast to G. (M.) menardii and G. (M.) limbata, which stay most 

of their lifetime in the neanic stages but have a less extended adult phase. 

Living planktonic foraminifera are known to change their depth of life in the water 

column during their life cycle. Extant menardellids are shallow thermocline dwellers. 

According to the model of Hemleben et al., (1989) they reproduce in relatively shallow waters 

to settle down in the water column while getting more mature. They reproduce again in 

shallower water. In this context, the extension of the adult stage relatively to ontogenetic time 

(Figure 5.8) can be interpreted as an adaptation to a shallower habitat. Theoretically, 

morphological modifications allow the peramorphic phenotype to cross an adaptative 

threshold and to colonize a new environment (McNamara, 1982, McKinney, 1986). Especially 

in larger benthic foraminifera the development of large shells associated with the prolongation 

of the adult stage is known as an adaptation to special niches (extreme K-type strategists, 

Hottinger, 1997, 2000a,b, 2001, McGowran, 2012), in contrast to a prolonged period of rapid 

growth but short adultness in R-type strategists. Eventually, a similar switch in life strategy, 

albeit to a less extreme degree, is seen in the planktonic menardellids, whereby G. (M.) 

multicamerata attains a tendency towards K-type strategists, while G. (M.) menardii and G. 

(M.) limbata remained in their rather R-type mode of behaviour. 

Parapatric diversification by vertical niche partitioning has been recently suggested to 

be a driven mechanism of planktonic speciation (Weiner et al., 2012). Alteration of 

ontogenetic sequences, in this context, provides an efficient way for planktonic organisms, 

which vertically migrate in the water column, to colonize a new habitat. Such an idea was 
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previously proposed by Wei et al., (1994), to explain the Pliocene evolution of their 

Globoconella clade. 

 

5.6 Conclusions 

The ontogenetic growth of 350 Mid-Pliocene menardellid individuals was studied, 

distributed in 6 different size classes, and using a new, faster micro-dissection by dissolution 

protocol. Menardellids show a large variability of ontogenetic growth. Most of this variability 

can be explained by differences in number of chambers or differences in growth rate between 

individuals.  

1. While menardellid species are often difficult to distinguish on the basis of their 

external morphology, they show a well distinctive growth pattern. Ontogeny has proved to be 

an important way to discriminate between foraminiferal species. External shell taxonomic 

features, like the commonly used number of chambers per whorl, are quite variable through 

ontogeny. The distinction in number of chambers per whorl between G. (M.) limbata, G. (M.) 

menardii and G. (M.) multicamerata is only possible in the adult segment, which begins about 

in the third whorl. 

2- There exist specific differences in the variability of growth curves. In G. (M.) 

menardii and G. (M.) limbata most of the ontogenetic variation is seen during the neanic stage, 

whereas in G. (M.) multicamerata, important variation is seen towards the adult stage. 

3- Morphological changes in the G. (M.) menardii - G. (M.) multicamerata lineage are 

successive heterochronic adaptations. The increase in number of chambers per whorl results in 

a pre-displacement of chamber morphology. The size increase in this lineage is the 

consequence of progressive hypermorphic extensions during the neanic stage in G. (M.) 

limbata and during the adult stage in G. (M.) multicamerata.  

4- Ecologically, the heterochronocline of Pliocene menardellids can be interpreted as a 

progressive shoaling of their life habitat, leading to a tendencially more K-selective behavior 

in G. (M.) multicamerata.  
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Plate 5.1: (on next page): illustrative plate showing three dissolved specimens per Pliocene menardellid 

species. For each specimen, an overview of the opened shell (A) and a picture of the first whorl (B) are 

displays.   

Specimen 1-2-a/b Globorotalia menardii (Size fraction 200-300µm) showing kummerform last chamber. 

Specimen 3-a/b: Globorotalia menardii (Size fraction 100-200µm) showing kummerform last chamber. 

Specimen 4-5 - Globorotalia limbata (Size fraction 500-600µm).  

Specimen 6 - Globorotalia limbata (Size fraction 400-500µm), showing kummerform last chamber. 

Specimen 7-8 - Globorotalia multicamerata (Size fraction 500-600µm).  

Specimen 9 - Globorotalia multicamerata (Size fraction 400-500µm. 
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6.1 Synopsis 

6.1.1 Morphological diversity of Mid-Pliocene menardellids 

Using the population-based approach, a total of 8 different but intergrading 

morphotypes were defined, which were informally denominated morphotypes MA, MB, MC1, 

MC2, MC3, SH1, SH2 and ME. Morphological overlap between all these forms are 

systematically observed. The comparison of these 8 morphotypes with formal morpho-species 

calls for an extended definition of the currently known species.  

Two different morphotypes MA and ME correspond to the morpho-species G. (M.) 

menardii. They significantly differ in size, but are very similar in shell morphology. 

Furthermore, the morphotype ME is interpreted to be equivalent to morphotype α from 

Knappertsbusch, (2007) and Brown, (2007). Size frequency distributions of these 

morphotypes indicate however that they do not belong to the same population, and their 

biogeographic distribution is different as well. Morphotypes MA and ME may therefore 

belong to different species. 

The morphotypes MC1, MC2 and MC3 are assigned to G. (M.) multicamerata. They 

significantly diverge from each other by the morphology of their shells. In profile view, the 

morphotype MC1 shows a flat shell with an elongated outline, and preferentially 7 to 8 

chambers. The morphotype MC2 is characterized by a thicker and more robust shell 

morphology, reaching commonly 9 chambers in the last whorl. Morphotype MC3 reaches the 

largest size and is defined by its typical flexure in the last chamber. Morphotypes MC1 and 

MC2 often co-exist at a single location, and their size frequency distribution cannot be kept 

apart from each other suggesting that they belong to the same population. Therefore, 

morphotypes MC1 and MC2 are interpreted here as two ecophenotypic variants of the same 

species 

The morphotype MB coincides best with the morpho-species G. (M.) limbata. The 

morphological boundaries of this morphotype are relatively stable worldwide. However, in 

contrast to the morphological descriptions given in taxonomical indices (Kennett and 



Chapter 6: Conclusion 
 

175 

Srinivasan, 1983; Bolli and Saunders 1985), our results suggest that most of the specimens 

with 5 chambers per whorl in the large size fraction belong to morphotype MB as well.  

The morphotypes SH1 and SH2 correspond to G. (M.) exilis and G. (M.) pertenuis, 

respectively. They differ from the other morphotypes by their delicate and densely perforated 

wall structure, as well as by their shell morphology. In the investigated material no evidence 

for morphotypes were found that would correspond to G. (M.) miocenica. 

 

6.1.2 Biogeography of menardellid morphotypes at 3.2  Ma 

The biogeographic dataset of this study comprises 19 samples coming from the tropical 

Atlantic, Pacific and Indian Ocean. They constitute a set of key locations within the 

distribution of Pliocene menardellids. The sample coverage is better in the Atlantic and is 

reduced close to the continental border in the Pacific, because of the poor availability of 

material in that area. A number of 720 menardellid specimens were analyzed in almost every 

sample, which garantees a solid estimation of the menardellid diversity at the 3.2  Ma time-

slice. The  menardellid biogeography could be subdivided into 5 distinct oceanic provinces.  

In the Atlantic Ocean, 2 provinces could be defined: a Western Atlantic province, 

where morphotype MA dominates and subordinate occurrences of morphotypes MB, MC2 and 

SH1. An Eastern Atlantic province, which contains higher abundance of larger menardellids, 

and which is composed mainly of Morphotypes MA, MB and MC1 and with occasional 

occurrences of morphotypes SH2 and MC3.  

The Pacific Ocean can be subdivided in two provinces as well: The Eastern Pacific 

area was found to be mostly depleted in menardellids at the 3.2 Ma time-slice; the investigated 

locations contained dominantly morphotype MA. The diversity of menardellid forms is higher 

in the Pacific Warm pool. Here, in the Western Pacific, the menardellid assemblage is 

characterized by the presence of the endemic morphotype ME and the co-existence of 

abundant morphotypes MA and MB. The morphotype MC2 occurs here only in low 

abundance.  
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All Indian Ocean locations show a homogeneous composition of menardellid 

morphotypes. Here, morphotype MA is the most abundant one, co-occurring with 

morphotypes MB and MC1. 

6.1.3 Ontogenetic development of Mid-Pliocene menardellids 

Microdissolution and dissection experiments from more than 350 specimens of G. (M.) 

menardii, G. (M.) limbata and G. (M.) multicamerata allowed to recognize 5 distinct growth 

stages, which correspond to the classical ontogenetic growth model for planktonic 

foraminifera of Brummer et al., (1987). Specific differences in growth stages were observed 

between the three species. G. (M.) menardii and G. (M.) limbata show a prolonged neanic 

stage (relatively to their entire ontogenetic life span). In contrast, G. (M.) multicamerata 

displays an extended adult stage.  

The analysis of ontogenetic development confirms that size is an important parameter 

to taxonomically distinguish menardellid globorotalids. Small specimens located in the 

lowermost size fraction are recognized to also represent adults of G. (M.) menardii, which is 

unexpected. In contrast, no strong differences were observed between variants of G. (M.) 

menardii at the large end of the size spectrum for forms, holding 5 to 7 chambers in the final 

whorl. 

The morphological evolution and size increase in the menardellid lineage of G. (M.) 

menardii - G. (M.) limbata - G. (M.) multicamerata are interpreted as the consequences of 

successive hypermorphic changes. It implies a phyletic delay of the onset of reproductive 

maturity and an extension of the adult stage in individuals. Such changes may be interpreted as 

a progressive adaptive response in direction of a K-like behavioral strategy, which is 

accompanied by habitat changes into a shallower depths in the case of G. (M.) multicamerata. 
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6.2 General conclusion 

The main contribution to foraminiferal taxonomy of the present work is the 

experimentation of a methodological approach that combines geometric morphometry, size 

frequency distribution modeling and ontogenetic reconstructions to define clusters within the 

menardellid morphological plexus. The used of SFD's proved to be a possibility to establish 

differences between morphological clusters, which then permitted an interpretation of the 

morphological variability in a biological and ecological context. The investigation of the 

ontogenetic variability within the Gaussian SFD modes has corroborated that these modes may 

correspond to species. This finding validates the initial assumption that the populations can be 

deconvolved from mixed sedimentary morphotype assemblages.  

Using this population-based approach, a total of 8 morphotypes were defined within 

the five formal menardellid morpho-species. These morphotypes shows specific biogeographic 

distribution. Morphotypes MA and MB, which correspond to G. (M.) menardii and G. (M.) 

limbata, are cosmopolitans, whereas morphotypes SH1 and SH2 (G. (M.) exilis and G. (M.) 

pertenuis) are endemic to the Atlantic Ocean, while morphotype ME is restricted to the Pacific 

Warm Pool. Morphotypes MC1 and MC2 are abundant in the Atlantic, and rare in the Pacific 

and Indian Oceans. The relative abundance of these two morphotype varies with geography: 

MC2 dominates the Atlantic and Pacific Warm pool, whereas MC1 occurs preferentially in the 

eastern Atlantic and Indian Ocean. The distribution and the similar SFDs suggest that 

morphotypes MC1 and MC2 represent eco-variants of the same species. The assignement of 

these two morphotypes to particular ecological niches in the water column is unfortunately out 

of range of this thesis, and would require additional geochemical investigations. 

Nevertheless, the ontogenetic observations make a vertical partitioning of the habitat of 

the various menardellid morphotypes likely. The shift of maturation onset and the extension in 

adultness from G. (M.) menardii (Morphotype MA), G. (M.) limbata (Morphotype MB) to G. 

(M.) multicamerata (Morphotype MC1) suggest a progressive shallowing of the menardellid 

habitat, indicating a preferential turn to a K-like strategy of life. The limited sample coverage 
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prevented a more detailed investigation of ontogenetic differences between morphotypes MC1 

and MC2, and a biogeographically improved ontogenetic dataset is needed for this. 

Nevertheless, the present investigation about the menardellid ontogeny shows the high value 

and need of growth studies for a sound understanding of the taxonomy, biology, and ecology 

of planktonic foraminifera. Considering the fundamental role of planktonic foraminifera in 

geosciences, it is surprising to notice that , as pointed out by Scott (2011), ontogenetic data are 

largely absent in species descriptions and taxonomic studies. More such ontogenetic 

descriptions, combined with morphological analyses of populations, would certainly lead to a 

better understanding of fossil planktonic foraminifera at species-level. 

 This study of menardellid morphological variability also highlights the restricted value 

of  too much simplified classification schemes (i.e. drawing lines to separate species) because 

between species' biogeographic and habitat variability through time there are more than simple 

linear discriminators. However, simple models serve as zero-order approximations to become 

able to quantify biological variations, especially when dealing with extinct fossils. 

 

6.3 Suggestions for further developments 

The evolutionary prospection project (cf. section 1.3) consists, in part, in successive 

investigations of different times-slices, which logically calls for another time interval to be 

investigated, in order to fill the gap between the present study and the previous Holocene 

menardellid mapping. Considering the large investment of effort and taking into account the 

collapse of Atlantic populations of G. (M.) menardii during glacial event (Sexton and Norris, 

2008 and reference therein), a further time slice should be selected very carefully. An 

interesting project would certainly be the investigation of the beginning of the menardellid 

lineage during the middle Miocene, in order to frame the evolutionary history of menardellid.  

Concerning menardellid diversity, one of the most important issues to solve would be 

to further concentrate on the apparent bimodal diversity of G. (M.) menardii morphotypes MA 

and ME. Does this bimodality exist in extant sediments as well? To answer this question, the 

original Holocene dataset from Brown, 2007 could be submitted to a similar size frequency 



Chapter 6: Conclusion 
 

179 

distribution analysis as was done here. The present study suggests that the Pacific Ocean and 

especially the Warm Pool in the western Pacific are of great interest to unravel the history of 

menardellids. A similar evolutionary morphometry study like the one from Knappertsbusch 

and Mary (2012) could be realized for ODP Site 807 on the Ontong Java Plateau.  

The present ontogenetic studies concentrates on only of 3 of the 8 recognized Pliocene 

menardellid morphotypes. Investigation of the other menardellid variants would provide 

interesting evidences to understand the evolutionary relationship between the different 

menardellid species. Is there any biogeographic variability in ontogenetic signal ? 
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Appendix 1 : AMDS source code 

This appendix give the source code of AMDS version9. It is customized for the 

computer that run AMOR and cannot be adapted for other application.  

 

 

#cs ---------------------------------------------------------------------------- 

 AutoIt Version: 3.3.6.0 

 Author:  Yannick MARY 

 Script Function: Correct AMOR device failure dur to automagnification and autozoom. Interrupt the run in case of roll or pitch error.  

 Template AutoIt script. 

#ce ---------------------------------------------------------------------------- 

 

#include <GuiConstants.au3> 

; Under Vista the  Windows API "SetSystemTime" may be rejected due to system security 

 

;NOTE: AMOR parameters 

;      Average tilting time : 7 minutes 

;  ...;note : this version has been created for Amor 3.17 

 

;Coortinates of AMOR's onglets  (if upleft corner is [0;0]) 

;Initialization 

Global $detailuser[2] = [425, 326] 

Global $adjustlight[2] = [425, 368] 

Global $OkgotoAmor[2] = [497, 465] 

Global $Okmanuelmode[2] = [878, 173] 

 

;Title:Settings singlemode 

Global $Loadcustom[2] = [90, 518] 

Global $entermanuel[2] = [93, 558] 

;Field zone 

Global $fieldinit[2] = [277, 172] 

Global $fieldlast[2] = [243, 172] 
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;Magnification zone 

Global $zoombutton[2] = [583,163] 

Global $zoominit[2] = [677, 172] 

Global $zoomlast[2] = [643, 172] 

Global $abortmagnification[2] =[656, 96] 

 

;Autocenter 

Global $autocenter[2] = [906, 325] 

 

;Autofocus 

Global $autofocus[2] = [906, 373] 

 

;Autotilt 

Global $autotilt[2] = [906, 419] 

 

;Automagnificate 

Global $automag[2] = [906, 462] 

 

;Autorotate 

Global $autorotate[2] = [906, 506] 

 

;Capture 

Global $autocapture[2] = [906, 691] 

 

;Exit 

Global $autoExit[2] = [906, 743] 

 

;Saving dialog parameter 

Global $Saveunder[2] = [405, 65] 

Global $save[2] = [458, 108] 

 

;windows parameters 

Global $windows[2] = [29, 1007] 

Global $winquit[2] = [148, 971] 
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;Global Variables for functions 

Global $Time 

Global $Hour[9] 

Global $Minutes[9] 

Global $Second[9] 

Global $Heure 

Global $Dim 

Global $Pas 

 

;handle variables 

Global $Handle_AMOR 

Global $Handle_Pad 

Global $Handle_rep 

Global $handle_Error 

 

;Other variables 

Dim $check 

Dim $Exitchoice 

Dim $file, $answer 

Dim $Sample 

Dim $send 

Dim $Slide 

Dim $Specimen 

Dim $timeout 

Dim $timeout2 

Dim $titlepad = "Dokument - WordPad" 

Dim $titlepad_name 

Dim $titletcheck 

Dim $path 

Dim $case 

 

;set the emergency and soft exits 

HotKeySet("!^q", "MyExit") 

HotKeySet("!^s", "softexit") 
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; Prompt the user to run the script - use a Yes/cancel prompt 

$answer = MsgBox(1, "AMDS", "You are about to run Amor Manual Driving Script (AMDS)" & @CRLF & "This AutoIt made script will allow 

you to let Amor work alone, in manual mode." & @CRLF & "" & @CRLF & "" & @CRLF & "Version 1.4                 By Yannick Mary and Michael 

Knappertsbusch") 

; If "No" was clicked (7) then exit the script 

If $answer = 2 Then 

 MsgBox(0, "AMDS", "You are about to leave Amor Manual Driving, have a nice day") 

 Exit 

EndIf 

 

; information prompts 

MsgBox(0, "AMDS", "IMPORTANT -------------------------------------------------- IMPORTANT" & @CRLF & "" & @CRLF & "" & @CRLF & "To 

interrupt AMDS while it is running, press simultaneously Alt+Ctrl+Q keys") 

MsgBox(0, "AMDS", "IMPORTANT -------------------------------------------------- IMPORTANT" & @CRLF & "" & @CRLF & "" & @CRLF & 

"The list of files file would be located on the desktop ") 

 

$Exitchoice = MsgBox(4, "AMDS", "Do you want to shut AMOR at the end of the run ?") 

$Sample = InputBox("AMDS", "Please enter sample code" & @CRLF & "" & @CRLF & "" & @CRLF & "The sample code will be written in 

picture names. Example:" & @CRLF & "503A202105K") 

$Slide = InputBox("AMDS", "Please enter the Slide number") 

$path = InputBox("AMDS", "Please enter the path to the Amor Slide Calibration file" & @CRLF & "NB: The full path is written on the properties of 

the file") 

MsgBox(0, "AMDS", "NB: The pictures will be saved in folder where the calibration file is located") 

 

; let the user the possibility to escape the script 

$answer = MsgBox(1, "AMDS", "Be sure Amor is open, than do the calibration and enter the manual mode") 

If $answer = 2 Then 

 MsgBox(0, "AMDS", "You are about to leave Amor Manual Driving, have a nice day") 

 Exit 

EndIf 

 

;Creation of GUI for selection of specimens.  

GUICreate("AMDS - Specimen choice", 675, 300) 

;Ligne 1 

$specimen1 = GUICtrlCreateCheckbox("Spe 1", 5, 5, 80, 17) 

GUICtrlSetState(-1, $GUI_CHECKED) 
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$specimen2 = GUICtrlCreateCheckbox("Spe 2", 5, 25, 80, 17) 

GUICtrlSetState(-1, $GUI_CHECKED) 

$specimen3 = GUICtrlCreateCheckbox("Spe 3", 5, 45, 80, 17) 

GUICtrlSetState(-1, $GUI_CHECKED) 

$specimen4 = GUICtrlCreateCheckbox("Spe 4", 5, 65, 80, 17) 

GUICtrlSetState(-1, $GUI_CHECKED) 

$specimen5 = GUICtrlCreateCheckbox("Spe 5", 5, 85, 80, 17) 

GUICtrlSetState(-1, $GUI_CHECKED) 

$specimen6 = GUICtrlCreateCheckbox("Spe 6", 5, 105, 80, 17) 

GUICtrlSetState(-1, $GUI_CHECKED) 

$specimen7 = GUICtrlCreateCheckbox("Spe 7", 5, 125, 80, 17) 

GUICtrlSetState(-1, $GUI_CHECKED) 

$specimen8 = GUICtrlCreateCheckbox("Spe 8", 5, 145, 80, 17) 

GUICtrlSetState(-1, $GUI_CHECKED) 

$specimen9 = GUICtrlCreateCheckbox("Spec 9", 5, 165, 80, 17) 

GUICtrlSetState(-1, $GUI_CHECKED) 

$specimen10 = GUICtrlCreateCheckbox("Spec 10", 5, 185, 80, 17) 

GUICtrlSetState(-1, $GUI_CHECKED) 

$specimen11 = GUICtrlCreateCheckbox("Spe 11", 5, 205, 80, 17) 

GUICtrlSetState(-1, $GUI_CHECKED) 

$specimen12 = GUICtrlCreateCheckbox("Spe 12", 5, 225, 80, 17) 

GUICtrlSetState(-1, $GUI_CHECKED) 

 

;Ligne 2 

$specimen13 = GUICtrlCreateCheckbox("Spe 13", 135, 5, 80, 17) 

GUICtrlSetState(-1, $GUI_CHECKED) 

$specimen14 = GUICtrlCreateCheckbox("Spe 14", 135, 25, 80, 17) 

GUICtrlSetState(-1, $GUI_CHECKED) 

$specimen15 = GUICtrlCreateCheckbox("Spe 15", 135, 45, 80, 17) 

GUICtrlSetState(-1, $GUI_CHECKED) 

$specimen16 = GUICtrlCreateCheckbox("Spe 16", 135, 65, 80, 17) 

GUICtrlSetState(-1, $GUI_CHECKED) 

$specimen17 = GUICtrlCreateCheckbox("Spe 17", 135, 85, 80, 17) 

GUICtrlSetState(-1, $GUI_CHECKED) 

$specimen18 = GUICtrlCreateCheckbox("Spe 18", 135, 105, 80, 17) 
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GUICtrlSetState(-1, $GUI_CHECKED) 

$specimen19 = GUICtrlCreateCheckbox("Spe 19", 135, 125, 80, 17) 

GUICtrlSetState(-1, $GUI_CHECKED) 

$specimen20 = GUICtrlCreateCheckbox("Spe 20", 135, 145, 80, 17) 

GUICtrlSetState(-1, $GUI_CHECKED) 

$specimen21 = GUICtrlCreateCheckbox("Spe 21", 135, 165, 80, 17) 

GUICtrlSetState(-1, $GUI_CHECKED) 

$specimen22 = GUICtrlCreateCheckbox("Spe 22", 135, 185, 80, 17) 

GUICtrlSetState(-1, $GUI_CHECKED) 

$specimen23 = GUICtrlCreateCheckbox("Spe 23", 135, 205, 80, 17) 

GUICtrlSetState(-1, $GUI_CHECKED) 

$specimen24 = GUICtrlCreateCheckbox("Spec 24", 135, 225, 80, 17) 

GUICtrlSetState(-1, $GUI_CHECKED) 

 

;Ligne 3 

$specimen25 = GUICtrlCreateCheckbox("Spe 25", 265, 5, 80, 17) 

GUICtrlSetState(-1, $GUI_CHECKED) 

$specimen26 = GUICtrlCreateCheckbox("Spe 26", 265, 25, 80, 17) 

GUICtrlSetState(-1, $GUI_CHECKED) 

$specimen27 = GUICtrlCreateCheckbox("Spe 27", 265, 45, 80, 17) 

GUICtrlSetState(-1, $GUI_CHECKED) 

$specimen28 = GUICtrlCreateCheckbox("Spe 28", 265, 65, 80, 17) 

GUICtrlSetState(-1, $GUI_CHECKED) 

$specimen29 = GUICtrlCreateCheckbox("Spe 29", 265, 85, 80, 17) 

GUICtrlSetState(-1, $GUI_CHECKED) 

$specimen30 = GUICtrlCreateCheckbox("Spe 30", 265, 105, 80, 17) 

GUICtrlSetState(-1, $GUI_CHECKED) 

$specimen31 = GUICtrlCreateCheckbox("Spe 31", 265, 125, 80, 17) 

GUICtrlSetState(-1, $GUI_CHECKED) 

$specimen32 = GUICtrlCreateCheckbox("Spe 32", 265, 145, 80, 17) 

GUICtrlSetState(-1, $GUI_CHECKED) 

$specimen33 = GUICtrlCreateCheckbox("Spe 33", 265, 165, 80, 17) 

GUICtrlSetState(-1, $GUI_CHECKED) 

$specimen34 = GUICtrlCreateCheckbox("Spe 34", 265, 185, 80, 17) 

GUICtrlSetState(-1, $GUI_CHECKED) 
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$specimen35 = GUICtrlCreateCheckbox("Spe 35", 265, 205, 80, 17) 

GUICtrlSetState(-1, $GUI_CHECKED) 

$specimen36 = GUICtrlCreateCheckbox("Spe 36", 265, 225, 80, 17) 

GUICtrlSetState(-1, $GUI_CHECKED) 

 

;Ligne 4 

$specimen37 = GUICtrlCreateCheckbox("Spe 37", 395, 5, 80, 17) 

GUICtrlSetState(-1, $GUI_CHECKED) 

$specimen38 = GUICtrlCreateCheckbox("Spe 38", 395, 25, 80, 17) 

GUICtrlSetState(-1, $GUI_CHECKED) 

$specimen39 = GUICtrlCreateCheckbox("Spe 39", 395, 45, 80, 17) 

GUICtrlSetState(-1, $GUI_CHECKED) 

$specimen40 = GUICtrlCreateCheckbox("Spe 40", 395, 65, 80, 17) 

GUICtrlSetState(-1, $GUI_CHECKED) 

$specimen41 = GUICtrlCreateCheckbox("Spe 41", 395, 85, 80, 17) 

GUICtrlSetState(-1, $GUI_CHECKED) 

$specimen42 = GUICtrlCreateCheckbox("Spe 42", 395, 105, 80, 17) 

GUICtrlSetState(-1, $GUI_CHECKED) 

$specimen43 = GUICtrlCreateCheckbox("Spe 43", 395, 125, 80, 17) 

GUICtrlSetState(-1, $GUI_CHECKED) 

$specimen44 = GUICtrlCreateCheckbox("Spe 44", 395, 145, 80, 17) 

GUICtrlSetState(-1, $GUI_CHECKED) 

$specimen45 = GUICtrlCreateCheckbox("Spe 45", 395, 165, 80, 17) 

GUICtrlSetState(-1, $GUI_CHECKED) 

$specimen46 = GUICtrlCreateCheckbox("Spe 46", 395, 185, 80, 17) 

GUICtrlSetState(-1, $GUI_CHECKED) 

$specimen47 = GUICtrlCreateCheckbox("Spe 47", 395, 205, 80, 17) 

GUICtrlSetState(-1, $GUI_CHECKED) 

$specimen48 = GUICtrlCreateCheckbox("Spe 48", 395, 225, 80, 17) 

GUICtrlSetState(-1, $GUI_CHECKED) 

 

;Ligne 5 

$specimen49 = GUICtrlCreateCheckbox("Spe 49", 525, 5, 80, 17) 

GUICtrlSetState(-1, $GUI_CHECKED) 

$specimen50 = GUICtrlCreateCheckbox("Spe 50", 525, 25, 80, 17) 
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GUICtrlSetState(-1, $GUI_CHECKED) 

$specimen51 = GUICtrlCreateCheckbox("Spe 51", 525, 45, 80, 17) 

GUICtrlSetState(-1, $GUI_CHECKED) 

$specimen52 = GUICtrlCreateCheckbox("Spe 52", 525, 65, 80, 17) 

GUICtrlSetState(-1, $GUI_CHECKED) 

$specimen53 = GUICtrlCreateCheckbox("Spe 53", 525, 85, 80, 17) 

GUICtrlSetState(-1, $GUI_CHECKED) 

$specimen54 = GUICtrlCreateCheckbox("Spe 54", 525, 105, 80, 17) 

GUICtrlSetState(-1, $GUI_CHECKED) 

$specimen55 = GUICtrlCreateCheckbox("Spe 55", 525, 125, 80, 17) 

GUICtrlSetState(-1, $GUI_CHECKED) 

$specimen56 = GUICtrlCreateCheckbox("Spe 56", 525, 145, 80, 17) 

GUICtrlSetState(-1, $GUI_CHECKED) 

$specimen57 = GUICtrlCreateCheckbox("Spe 57", 525, 165, 80, 17) 

GUICtrlSetState(-1, $GUI_CHECKED) 

$specimen58 = GUICtrlCreateCheckbox("Spe 58", 525, 185, 80, 17) 

GUICtrlSetState(-1, $GUI_CHECKED) 

$specimen59 = GUICtrlCreateCheckbox("Spe 59", 525, 205, 80, 17) 

GUICtrlSetState(-1, $GUI_CHECKED) 

$specimen60 = GUICtrlCreateCheckbox("Spe 60", 525, 225, 80, 17) 

GUICtrlSetState(-1, $GUI_CHECKED) 

 

;Fin de creation du Gui 

$verif = GUICtrlCreateButton("RUN AMDS", 250, 265, 80, 30) 

GUISetState(@SW_SHOW) 

While 1 

 $msg = GUIGetMsg() 

 Select 

  Case $msg = $GUI_EVENT_CLOSE 

   Exit 

  Case $msg = $verif 

   ExitLoop 

 EndSelect 

WEnd 

GUISetState(@SW_HIDE) 
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Sleep(2000) 

 

; Open wordpad ! WORDPAD GERMAN ONLY 

Run("C:\Programme\Windows NT\Zubehör\wordpad.exe") 

WinWaitActive($titlepad) 

$Handle_Pad = WinGetHandle($titlepad) 

WinMove("Dokument - WordPad", "", 0, 0) 

Sleep(100) 

Send("^s") 

$titlepad_name = "List_of_files" 

;verifie la presence d un fichier list_of_files:txt 

$titletcheck = FileExists("C:\Dokumente und Einstellungen\snmmic\Desktop\List_of_files.txt") 

If $titletcheck = 1 Then 

 MsgBox(0, "AMDS", "The List_of_files file already exists. Please remove it and restart the Script") 

 Exit 

EndIf 

 

;saving the file 

Send($titlepad_name) 

Send("{ENTER}") 

Sleep(150) 

Send("{ENTER}") 

Sleep(150) 

;moving the position of the wordpad prompt to perform further manipulations 

WinMove($Handle_Pad, "", 0, 0) 

Sleep(150) 

;and good night word pad 

WinMinimizeAll() 

Sleep(250) 

;creating the report file 

Run("C:\Programme\Windows NT\Zubehör\wordpad.exe") 

WinWaitActive($titlepad) 

$Handle_rep = WinGetHandle($titlepad) 

WinMove($titlepad, "", 0, 0) 

Sleep(100) 
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Send("^s") 

;saving the file 

$titlepad_name = "Report_run" 

Send($titlepad_name) 

Send("{ENTER}") 

Sleep(150) 

Send("{ENTER}") 

Sleep(150) 

Call("Time") 

Send($Heure) 

$send = "    Début du Run" 

Send($send) 

Send("{ENTER}") 

Send("^s") 

Sleep(1000) 

Send("{ENTER}") 

Sleep(1000) 

Send("{ENTER}") 

Sleep(1000) 

 

;minimizing again 

WinMinimizeAll() 

Sleep(250) 

 

;AMOR 

WinActivate("AMOR") 

$Handle_AMOR = WinGetHandle("AMOR") 

Sleep(1500) 

 

;Focus on AMOR, search for any "ERROR" prompt 

 

;--------------------------------main loop for picture and orientation---------------------------------- 

 

WinMove($Handle_AMOR, "", 0, 0) 

$Specimen = 0 
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AdlibRegister("Errors") 

For $i = $specimen1 To $specimen60 

 $Specimen = $Specimen + 1 

 If GUICtrlRead($i) = $GUI_CHECKED Then 

  sleep(1000) 

  WinActivate($Handle_rep) 

  WinWaitActive($Handle_rep) 

  Call("Time") 

  Send($Heure & " ") 

  $send = "Specimen n°" & $Specimen & 

"____________________________________________________________________________ " 

  Send($send) 

  Sleep(1000) 

  Send("^s") 

  Sleep(1000) 

  Send("{ENTER}") 

  Sleep(1000) 

  Send("{ENTER}") 

  Sleep(1000) 

  WinSetState($Handle_rep, "", @SW_MINIMIZE) 

 

  ;Give focus to Amor 

  Do 

   $Pas = 0 

   WinActivate($Handle_AMOR) 

   Sleep(1000) 

  Until $Pas = 0 

 

  ;Specimen Selection 

  Do 

   $Pas = 0 

   WinActivate($Handle_AMOR) 

   Sleep(1500) 

   MouseClickDrag("left", $fieldinit[0], $fieldinit[1], $fieldlast[0], $fieldlast[1], 1) 

   Sleep(1000) 
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   Send($Specimen) 

   Sleep(1000) 

   Send("{ENTER}") 

   Sleep(25000) 

  Until $Pas = 0 

 

  ;Autocenter (just in case) 

  Do 

   $Pas = 0 

   WinActivate($Handle_AMOR) 

   Sleep(1500) 

   MouseClick("left", $autocenter[0], $autocenter[1]) 

   Sleep(2000) 

   MouseClick("left", $autocenter[0], $autocenter[1]) 

   Sleep(2000) 

  Until $Pas = 0 

 

  ;Automagnificate 

  Do 

   $Pas = 0 

   WinActivate($Handle_AMOR) 

   Sleep(1500) 

   MouseClick("left", $automag[0], $automag[1]) 

   Sleep(1000) 

   $timeout = WinWaitClose("Automagnificate", "", 90) 

 

   ;Include a magnification abort Statement and a reboot Amor Statement 

   If $timeout = 0 Then 

    winactivate("Automagnificate") 

    Winmove("Automagnificate","",0,0) 

    Mouseclick("left",$abortmagnification[0],$abortmagnification[1]) 

    sleep(10000) 

    ;Check for an automagnification crash 

    $timeout2 = winexists("Automagnificate") 
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    If $timeout2 = 0 then 

     WinActivate($Handle_rep) 

     WinWaitActive($Handle_rep) 

     Call("Time") 

     Send($Heure & " ") 

     $send = $Specimen & " Automagnificate aborted." 

     Send($send) 

     Sleep(1000) 

     Send("^s") 

     Sleep(1000) 

     Send("{ENTER}") 

     Sleep(1000) 

     Send("{ENTER}") 

     Sleep(1000) 

     WinSetState($Handle_rep, "", @SW_MINIMIZE) 

     sleep(5000) 

     $case = 1 

     call("failure") 

    endif 

 

    If $timeout2 = 1 then 

     WinActivate($Handle_rep) 

     WinWaitActive($Handle_rep) 

     Call("Time") 

     Send($Heure & " ") 

     $send = $Specimen & " Automagnificate timeout. Amor rebooted" 

     Send($send) 

     Sleep(1000) 

     Send("^s") 

     Sleep(1000) 

     Send("{ENTER}") 

     Sleep(1000) 

     Send("{ENTER}") 

     Sleep(1000) 

     WinSetState($Handle_rep, "", @SW_MINIMIZE) 
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     Sleep(500) 

     $case = 1 

     Call("Reload") 

    EndIf 

 

   sleep(500) 

   EndIf 

 

  Sleep(500) 

  Until $Pas = 0 

 

  ;Autotilt 

  Do 

   $Pas = 0 

   Sleep(500) 

   WinActivate($Handle_AMOR) 

   Sleep(1500) 

   MouseClick("left",$autotilt[0],$autotilt[1]) 

   Sleep(1000) 

   $timeout=WinWaitClose("Autotilt","",1800) 

   ;Include reboot Amor Statement 

 

   if $timeout= 0 then 

    Winactivate($handle_rep) 

    WinWaitActive($handle_rep) 

    Call("Time") 

    send($heure&" ") 

    $send=$specimen&" Autotilt timeout. Amor rebooted" 

    send($send) 

    sleep(1000) 

    Send("^s") 

    sleep(1000) 

    send("{ENTER}") 

    sleep(1000) 

    send("{ENTER}") 
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    sleep(1000) 

    WinSetState($handle_rep, "", @SW_MINIMIZE) 

    sleep(500) 

    $case=2 

    call("Reload") 

   EndIf 

   Sleep(2000) 

  Until $Pas = 0 

 

  ;Automagnificate again 

  Do 

   $Pas = 0 

   WinActivate($Handle_AMOR) 

   Sleep(1500) 

   MouseClick("left", $automag[0], $automag[1]) 

   Sleep(1000) 

   $timeout = WinWaitClose("Automagnificate", "", 90) 

 

   ;Include a magnification abort Statement and a reboot Amor Statement 

   If $timeout = 0 Then 

    winactivate("Automagnificate") 

    Winmove("Automagnificate","",0,0) 

    Mouseclick("left",$abortmagnification[0],$abortmagnification[1]) 

    sleep(10000) 

    ;Check for an automagnification crash 

    $timeout2 = winexists("Automagnificate") 

 

    If $timeout2 = 0 then 

     WinActivate($Handle_rep) 

     WinWaitActive($Handle_rep) 

     Call("Time") 

     Send($Heure & " ") 

     $send = $Specimen & " Automagnificate aborted." 

     Send($send) 

     Sleep(1000) 
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     Send("^s") 

     Sleep(1000) 

     Send("{ENTER}") 

     Sleep(1000) 

     Send("{ENTER}") 

     Sleep(1000) 

     WinSetState($Handle_rep, "", @SW_MINIMIZE) 

     sleep(5000) 

     $case = 3 

     call("failure") 

    endif 

 

    If $timeout2 = 1 then 

     WinActivate($Handle_rep) 

     WinWaitActive($Handle_rep) 

     Call("Time") 

     Send($Heure & " ") 

     $send = $Specimen & " Automagnificate timeout. Amor rebooted" 

     Send($send) 

     Sleep(1000) 

     Send("^s") 

     Sleep(1000) 

     Send("{ENTER}") 

     Sleep(1000) 

     Send("{ENTER}") 

     Sleep(1000) 

     WinSetState($Handle_rep, "", @SW_MINIMIZE) 

     Sleep(500) 

     $case = 3 

     Call("Reload") 

    EndIf 

 

   sleep(500) 

   EndIf 
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  Sleep(500) 

  Until $Pas = 0 

 

  ;Autocenter again 

  Do 

   $Pas = 0 

   WinActivate($Handle_AMOR) 

   Sleep(1500) 

   MouseClick("left", $autocenter[0], $autocenter[1]) 

   Sleep(2000) 

   MouseClick("left", $autocenter[0], $autocenter[1]) 

   Sleep(2000) 

  Until $Pas = 0 

 

  ;Autofocus again 

  Do 

   $Pas = 0 

   WinActivate($Handle_AMOR) 

   Sleep(1500) 

   MouseClick("left", $autofocus[0], $autofocus[1]) 

   Sleep(1000) 

   $timeout = WinWaitClose("Autofocus", "", 600) 

   If $timeout = 0 Then 

    WinActivate($Handle_rep) 

    WinWaitActive($Handle_rep) 

    Call("Time") 

    Send($Heure & " ") 

    $send = $Specimen & " Autofocus timeout. Amor rebooted" 

    Send($send) 

    Sleep(1000) 

    Send("^s") 

    Sleep(1000) 

    Send("{ENTER}") 

    Sleep(1000) 

    Send("{ENTER}") 
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    Sleep(1000) 

    WinSetState($Handle_rep, "", @SW_MINIMIZE) 

    Sleep(500) 

    $case = 4 

    Call("Reload") 

   EndIf 

   Sleep(500) 

  Until $Pas = 0 

 

  ;Rotating 

  Do 

   $Pas = 0 

   WinActivate($Handle_AMOR) 

   Sleep(1500) 

   Sleep(500) 

   MouseClick("left", $autorotate[0], $autorotate[1]) 

   Sleep(2500) 

  Until $Pas = 0 

 

  ;Capture statements 

  Do 

   $Pas = 0 

   WinActivate($Handle_AMOR) 

   Sleep(1500) 

   MouseClick("left", $autocapture[0], $autocapture[1]) 

   WinWaitActive("Save...") 

   WinMove("Save...", "", 0, 0) 

   Sleep(1000) 

   MouseClick("left", $Saveunder[0], $Saveunder[1]) 

   WinWaitActive("Datei speichern unter") 

   Sleep(1000) 

   Send($Sample) 

   Sleep(100) 

 

   If $Specimen < 10 Then 
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    Send("0") 

   EndIf 

 

   Send($Specimen) 

   Sleep(100) 

   Send($Slide) 

   Sleep(100) 

 

   If $check = 1 Then 

    $send = "_rollerror" 

    Send($send) 

    $check = 0 

   EndIf 

 

   Send("{ENTER}") 

   Sleep(1000) 

   WinActivate("Save...") 

   Sleep(1000) 

   MouseClick("left", $save[0], $save[1]) 

   Sleep(2000) 

   WinActivate("AMOR") 

   Sleep(1500) 

  Until $Pas = 0 

 

  ;writing report 

  WinActivate($Handle_rep) 

  WinWaitActive($Handle_rep) 

  Call("Time") 

  Send($Heure & "     ") 

  Send($Specimen) 

  $send = "------ Specimen finished" 

  Send($send) 

  Send("^s") 

  Sleep(1000) 

  Send("{ENTER}") 
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  Sleep(1000) 

  Send("{ENTER}") 

  Sleep(1000) 

  Send("{ENTER}") 

  Sleep(1000) 

  WinSetState($Handle_rep, "", @SW_MINIMIZE) 

 

  ;Writing the Magnification in the "list of file" file 

  WinActivate($Handle_AMOR) 

  MouseClickDrag("left", $zoominit[0], $zoominit[1], $zoomlast[0], $zoomlast[1]) 

  Send("^c") 

  Sleep(500) 

  WinActivate($Handle_Pad) 

  Sleep(1500) 

 

  If $Specimen < 10 Then 

   Send("0") 

  EndIf 

 

  Send($Specimen) 

  Send($Slide) 

  Send("r") 

  Send(",") 

  Send("^v") 

  Send("{ENTER}") 

  Send("^s") 

  Sleep(1000) 

  Send("{ENTER}") 

  Sleep(1000) 

 EndIf 

Next 

 

WinMinimizeAll() 

Sleep(1000) 

WinActivate($Handle_Pad) 
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Send("^s") 

Sleep(500) 

Send("{ENTER}") 

Sleep(1000) 

Send("{ENTER}") 

Sleep(1000) 

Send("{ENTER}") 

Sleep(1000) 

 

;writing report 

WinActivate($Handle_rep) 

WinWaitActive($Handle_rep) 

Call("Time") 

Send($Heure & "     ") 

Send($Specimen) 

$send = "------ RUN finished ---------------------------------------" 

Send($send) 

Send("^s") 

Sleep(1000) 

Send("{ENTER}") 

Sleep(1000) 

Send("{ENTER}") 

Sleep(1000) 

Send("{ENTER}") 

Sleep(1000) 

 

If $Exitchoice = 6 Then 

 Call("softexit") 

EndIf 

 

While 1 

 Sleep(500) 

 MsgBox(0, "AMDS", "Job finished !") 

WEnd 
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;Error detection function 

Func Errors() 

 $Dim = WinExists("[W:338;H:324]", "") 

 If $Dim = 1 Then 

  $handle_Error = WinGetHandle("[W:338;H:324]", "") 

  WinActivate($handle_Error) 

  Send("{ENTER}") 

  Send("{ENTER}") 

  WinMinimizeAll() 

  Sleep(500) 

  WinActivate($Handle_rep) 

  WinWaitActive($Handle_rep) 

 

  Call("Time") 

  Send($Heure & "     ") 

  Send($Specimen) 

  $send = "-----------Imaq Error-----------" 

  Send($send) 

  Send("^s") 

  Sleep(1000) 

  Send("{ENTER}") 

  Sleep(1000) 

  Send("{ENTER}") 

  Sleep(1000) 

  WinMinimizeAll() 

  Sleep(500) 

  WinActivate($Handle_AMOR) 

  $Pas = 20 

 EndIf 

 

 $Dim = WinExists("[W:670;H:162]", "") 

 If $Dim = 1 Then 

  $handle_Error = WinGetHandle("[W:338;H:324]", "") 

  WinActivate($handle_Error) 

  Send("{ENTER}") 
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  Send("{ENTER}") 

  WinMinimizeAll() 

  Sleep(500) 

  WinActivate($Handle_rep) 

  WinWaitActive($Handle_rep) 

  Call("Time") 

  Send($Heure & "     ") 

  Send($Specimen) 

  $send = "-----------ROLL Error-----------" 

  Send($send) 

  Send("^s") 

  Sleep(1000) 

  Send("{ENTER}") 

  Sleep(1000) 

  Send("{ENTER}") 

  Sleep(1000) 

  WinMinimizeAll() 

  Sleep(500) 

  WinActivate($Handle_AMOR) 

  $check = 1 

 EndIf 

EndFunc 

 

;function reload 

Func Reload() 

 Sleep(500) 

 ProcessClose("amor3.12.exe") 

 Sleep(1500) 

 WinActivate($Handle_rep) 

 WinWaitActive($Handle_rep) 

 Call("Time") 

 Send($Heure & "     ") 

 Send($Specimen) 

 $send = "-----------AMOR RELOADED-----------" 

 Send($send) 
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 Send("^s") 

 Sleep(1000) 

 Send("{ENTER}") 

 Sleep(1000) 

 Send("{ENTER}") 

 Sleep(1000) 

 WinSetState($Handle_rep, "", @SW_MINIMIZE) 

 Sleep(3500) 

 Run("C:\Programme\AMOR3.17\Amor3.17.exe", "", @SW_MAXIMIZE) 

 WinWaitActive("AMOR") 

 Sleep(500) 

 WinActivate("AMOR") 

 Sleep(1500) 

 $Handle_AMOR = WinGetHandle("AMOR") 

 Sleep(1500) 

 WinMove("AMOR", "", 0, 0) 

 Sleep(500) 

 MouseClick("left", $detailuser[0], $detailuser[1]) 

 Sleep(1500) 

 MouseClick("left", $adjustlight[0], $adjustlight[1]) 

 Sleep(1500) 

 MouseClick("left", $OkgotoAmor[0], $OkgotoAmor[1]) 

 Sleep(3500) 

 Send("{ENTER}") 

 Sleep(120000) 

 WinActivate("AMOR") 

 Sleep(500) 

 WinMove("AMOR", "", 0, 0) 

 Sleep(1000) 

 MouseClick("left", $Okmanuelmode[0], $Okmanuelmode[1]) 

 Sleep(2000) 

 WinMove("Settings singlemode", "", 0, 0) 

 Sleep(1500) 

 MouseClick("left", $Loadcustom[0], $Loadcustom[1]) 

 Sleep(1500) 
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 Send($path) 

 Sleep(1000) 

 Send("{ENTER}") 

 Sleep(1500) 

 Send("{ENTER}") 

 Sleep(1500) 

 MouseClick("left", $entermanuel[0], $entermanuel[1]) 

 Sleep(15000) 

 WinActivate("AMOR") 

 Sleep(500) 

 WinMove("AMOR", "", 0, 0) 

 WinActivate($Handle_rep) 

 WinWaitActive($Handle_rep) 

 Call("Time") 

 Send($Heure & "     ") 

 Send($Specimen) 

 $send = "-----------AMOR RELOADED OK----------" 

 Send($send) 

 Send("^s") 

 Sleep(1000) 

 Send("{ENTER}") 

 Sleep(1000) 

 Send("{ENTER}") 

 Sleep(1000) 

call ("Failure") 

EndFunc 

 

;function failure 

Func Failure() 

 

 ; first Automagnification failure 

 If $case >= 1 Then 

  ;Specimen Selection 

  Do 

   $Pas = 0 
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   WinActivate($Handle_AMOR) 

   Sleep(1500) 

   MouseClickDrag("left", $fieldinit[0], $fieldinit[1], $fieldlast[0], $fieldlast[1], 1) 

   Sleep(1000) 

   Send($Specimen) 

   Sleep(1000) 

   Send("{ENTER}") 

   Sleep(25000) 

   mouseclick("left",$zoombutton[0],$zoombutton[1]) 

   sleep(4000) 

  Until $Pas = 0 

 

  ;Autocenter (just in case) 

  Do 

   $Pas = 0 

   WinActivate($Handle_AMOR) 

   Sleep(1500) 

   MouseClick("left", $autocenter[0], $autocenter[1]) 

   Sleep(2000) 

   MouseClick("left", $autocenter[0], $autocenter[1]) 

   Sleep(2000) 

  Until $Pas = 0 

 

  ;Automagnificate 

  Do 

   $Pas = 0 

   WinActivate($Handle_AMOR) 

   Sleep(1500) 

   MouseClick("left", $automag[0], $automag[1]) 

   Sleep(1000) 

   $timeout = WinWaitClose("Automagnificate", "", 300) 

 

   ;Include reboot Amor Statement 

   If $timeout = 0 Then 

    WinActivate($Handle_rep) 
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    WinWaitActive($Handle_rep) 

    Call("Time") 

    Send($Heure & " ") 

    $send = $Specimen & " Automagnificate timeout. Amor rebooted" 

    Send($send) 

    Sleep(1000) 

    Send("^s") 

    Sleep(1000) 

    Send("{ENTER}") 

    Sleep(1000) 

    Send("{ENTER}") 

    Sleep(1000) 

    WinSetState($Handle_rep, "", @SW_MINIMIZE) 

    Sleep(500) 

    $case = 1 

    Call("Reload") 

   EndIf 

   Sleep(500) 

 

  Until $Pas = 0 

 EndIf 

 

 ; Autotilt Failure 

 If $case >= 2 Then 

  ;Autotilt 

  Do 

   $Pas = 0 

   Sleep(500) 

   WinActivate($Handle_AMOR) 

   Sleep(1500) 

   MouseClick("left", $autotilt[0], $autotilt[1]) 

   Sleep(1000) 

   $timeout = WinWaitClose("Autotilt", "", 3200) 

   ;Include reboot Amor Statement 
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   If $timeout = 0 Then 

    WinActivate($Handle_rep) 

    WinWaitActive($Handle_rep) 

    Call("Time") 

    Send($Heure & " ") 

    $send = $Specimen & " Autotilt timeout. Amor rebooted" 

    Send($send) 

    Sleep(1000) 

    Send("^s") 

    Sleep(1000) 

    Send("{ENTER}") 

    Sleep(1000) 

    Send("{ENTER}") 

    Sleep(1000) 

    WinSetState($Handle_rep, "", @SW_MINIMIZE) 

    Sleep(500) 

    $case = 2 

    Call("Reload") 

   EndIf 

   Sleep(2000) 

  Until $Pas = 0 

 EndIf 

 

 ; Second Automagnification failure 

 If $case >= 3 Then 

  ;Automagnificate again 

  Do 

   $Pas = 0 

   WinActivate($Handle_AMOR) 

   Sleep(1500) 

   MouseClick("left", $automag[0], $automag[1]) 

   Sleep(1000) 

   $timeout = WinWaitClose("Automagnificate", "", 300) 

   ;Include reboot Amor Statement 

   If $timeout = 0 Then 
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    WinActivate($Handle_rep) 

    WinWaitActive($Handle_rep) 

    Call("Time") 

    Send($Heure & " ") 

    $send = $Specimen & " Automagnificate timeout. Amor rebooted" 

    Send($send) 

    Sleep(1000) 

    Send("^s") 

    Sleep(1000) 

    Send("{ENTER}") 

    Sleep(1000) 

    Send("{ENTER}") 

    Sleep(1000) 

    WinSetState($Handle_rep, "", @SW_MINIMIZE) 

    Sleep(500) 

    $case = 3 

    Call("Reload") 

   EndIf 

 

   Sleep(500) 

  Until $Pas = 0 

 EndIf 

 

 ;Autofocus failure 

 If $case >= 4 Then 

  ;Autofocus again 

  Do 

   $Pas = 0 

   WinActivate($Handle_AMOR) 

   Sleep(1500) 

   MouseClick("left", $autofocus[0], $autofocus[1]) 

   Sleep(1000) 

   $timeout = WinWaitClose("Autofocus", "", 1800) 

   If $timeout = 0 Then 

    WinActivate($Handle_rep) 
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    WinWaitActive($Handle_rep) 

    Call("Time") 

    Send($Heure & " ") 

    $send = $Specimen & " Autofocus timeout. Amor rebooted" 

    Send($send) 

    Sleep(1000) 

    Send("^s") 

    Sleep(1000) 

    Send("{ENTER}") 

    Sleep(1000) 

    Send("{ENTER}") 

    Sleep(1000) 

    WinSetState($Handle_rep, "", @SW_MINIMIZE) 

    Sleep(500) 

    $case = 4 

    Call("Reload") 

   EndIf 

   Sleep(500) 

  Until $Pas = 0 

 EndIf 

 

 $case = 0 

EndFunc 

 

;function to get the time from the system, usefull to write the report file 

Func Time() 

 $Hour = @HOUR 

 $Minutes = @MIN 

 $Second = @SEC 

 $Heure = $Hour & ":" & $Minutes & ":" & $Second 

EndFunc 

 

;Function to Stop the Script 

Func MyExit() 

 Exit 
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EndFunc 

 

Func softexit() 

 Sleep(20000) 

 WinActivate($Handle_Pad) 

 Send("^s") 

 Sleep(1500) 

 Send("{ENTER}") 

 Sleep(500) 

 Send("{ENTER}") 

 Sleep(500) 

 WinActivate($Handle_AMOR) 

 WinActivate($Handle_AMOR) 

 WinWaitClose("Autotilt") 

 WinWaitClose("Automagnificate") 

 Sleep(500) 

 MouseClick("left", $autoExit[0], $autoExit[1]) 

 Sleep(9000) 

 Send("{ENTER}") 

 Sleep(20000) 

 $Handle_AMOR = WinGetHandle("AMOR") 

 Sleep(1500) 

 WinMove("AMOR", "", 0, 0) 

 Sleep(500) 

 MouseClick("left", 883, 615) 

 Sleep(2000) 

 Send("{ENTER}") 

 Sleep(8000) 

 Send("{ENTER}") 

 Sleep(60000) 

 $Dim = 0 

 $Dim = WinExists("AMOR") 

 

Select 

 case $Dim =1 
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  WinActivate($Handle_rep) 

  $send = "AMOR CLOSING PROBLEME" 

  Send($send) 

  Send("^s") 

  Sleep(1000) 

  Send("{ENTER}") 

  Sleep(1000) 

  Send("{ENTER}") 

 

 Case $Dim = 0 

  WinActivate($Handle_rep) 

  $send = "AMOR CLOSING OK" 

  Send($send) 

  Send("^s") 

  Sleep(1000) 

  Send("{ENTER}") 

  Sleep(1000) 

  Send("{ENTER}") 

  Sleep(1000) 

 EndSelect 

 

sleep(1500) 

WinActivate($Handle_rep) 

sleep(1500) 

send("!{F4}") 

sleep(1500) 

send("{enter}") 

sleep(1500) 

send("{enter}") 

WinActivate($Handle_Pad) 

sleep(1500) 

send("!{F4}") 

sleep(1500) 

send("{enter}") 

sleep(1500) 
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send("{enter}") 

sleep(50000) 

 

MouseClick("left",$windows[0],$windows[1]) 

sleep(500) 

MouseClick("left", $winquit[0], $winquit[1]) 

sleep(1500) 

send("{ENTER}") 

sleep(1500) 

send("{ENTER}") 

 

Exit 

 

EndFunc 
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Appendix 2 : Details diagnosis for each localities.  

 

Appendix 2.1: Eastern Atlantic Differential diagnosis: area versus δY/δX ratio. Frequencies are corrected 

before plotting in order to remove the effects of sampling per size fraction. (A) ODP Site 659 frequency 

distributions, morphotypes and associated boundary distribution (B) Site 661 (C) Site 667. 
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Appendix 2.2: Western Atlantic differential diagnosis: area versus δY/δX ratio. Frequencies are corrected 

before plotting in order to remove the effects of sampling per size fraction. (A) ODP Site 1006 frequency 

distributions, morphotypes and associated boundary distribution (B) Site 999 (C) Site 502 (D) Site 925. 
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Appendix 2.3: Eastern Pacific differential diagnosis: area versus δY/δX ratio. Frequencies are corrected 

before plotting in order to remove the effects of sampling per size fraction. (A) ODP Site 846 frequency 

distributions, morphotypes and associated boundary distribution (B) Site 503.  
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Appendix 2.4: Western Pacific differential diagnosis: area versus δY/δX ratio. Frequencies are corrected 

before plotting in order to remove the effects of sampling per size fraction. (A) ODP Site 1143 frequency 

distributions, morphotypes and associated boundary distribution (B) Site 807 (C) Site 806 (D) Site 823 
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Appendix 2.5: Easter Indian Ocean differential diagnosis: area versus δY/δX ratio. Frequencies are 

corrected before plotting in order to remove the effects of sampling per size fraction. (A) ODP Site757 

frequency distributions, morphotypes and associated boundary distribution (B) Site 758 (C) Site 763. 
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Appendix 2.6: Western Indian Ocean differential diagnosis: area versus δY/δX ratio. Frequencies are 

corrected before plotting in order to remove the effects of sampling per size fraction. (A) ODP Site721 

frequency distributions, morphotypes and associated boundary distribution (B) Site 716 (C) Site 707. 
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